Blockchain-based cloud storage system with CP-ABE-based access control and revocation process

Author(s):  
Pratima Sharma ◽  
Rajni Jindal ◽  
Malaya Dutta Borah

Cloud computing, an efficient technology that utilizes huge amount of data file storage with security. However, the content owner does not controlling data access for unauthorized clients and does not control data storage and usage of data. Some previous approaches data access control to help data de-duplication concurrently for cloud storage system. Encrypted data for cloud storage is not effectively handled by current industrial de-duplication solutions. The deduplication is unguarded from brute-force attacks and fails in supporting control of data access .An efficient data confining technique that eliminates redundant data’s multiple copies which is commonly used is Data-Deduplication. It reduces the space needed to store these data and thus bandwidth is saved. An efficient content discovery and preserving De-duplication (ECDPD) algorithm that detects client file range and block range of de-duplication in storing data files in the cloud storage system was proposed to overpower the above problems.Data access control is supported by ECDPD actively. Based on Experimental evaluations, proposed ECDPD method reduces 3.802 milliseconds of DUT (Data Uploading Time) and 3.318 milliseconds of DDT (Data Downloading Time) compared than existing approaches


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Xingguang Zhou ◽  
Jianwei Liu ◽  
Zongyang Zhang ◽  
Qianhong Wu

The application of cloud storage system has been deployed widely in recent years. A lot of electronic medical records (EMRs) are collected and uploaded to the cloud for scalable sharing among the authority users. It is necessary to guarantee the confidentiality of EMRs and the privacy of EMR owners. To achieve this target, we summarize a series of attack behaviors in the cloud storage system and present the security model against many types of unexpected privacy leakage. Privacy of unassailed EMRs is guaranteed in this model, and the influence of privacy leakage is controlled in a certain scope. We also propose a role-based access control scheme to achieve flexible access control on these private EMRs. One can access medical records only if his/her role satisfies the defined access policy, which implies a fine-grained access control. Theoretical and experimental analyses show the efficiency of our scheme in terms of computation and communication.


2015 ◽  
Vol 118 (12) ◽  
pp. 46-52 ◽  
Author(s):  
Bokefode JayantD. ◽  
Ubale Swapnaja A. ◽  
Pingale Subhash V. ◽  
Karande Kailash J. ◽  
Apate Sulabha S.

2014 ◽  
Vol 571-572 ◽  
pp. 79-89
Author(s):  
Ting Zhong ◽  
You Peng Sun ◽  
Qiao Liu

In the cloud storage system, the server is no longer trusted, which is different from the traditional storage system. Therefore, it is necessary for data owners to encrypt data before outsourcing it for sharing. Simultaneously, the enforcement of access policies and support of policies updates becomes one of the most challenging issues. Ciphertext-policy attribute-based encryption (CP-ABE) is an appropriate solution to this issue. However, it comes with a new obstacle which is the attribute and user revocation. In this paper, we propose a fine-grained access control scheme with efficient revocation based on CP-ABE approach. In the proposed scheme, we not only realize an efficient and immediate revocation, but also eliminate some burden of computational overhead. The analysis results indicate that the proposed scheme is efficient and secure for access control in cloud storage systems.


Sign in / Sign up

Export Citation Format

Share Document