access control model
Recently Published Documents


TOTAL DOCUMENTS

992
(FIVE YEARS 153)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Pengshou Xie ◽  
Haoxuan Yang ◽  
Liangxuan Wang ◽  
Shuai Wang ◽  
Tao Feng ◽  
...  

The communication process of devices in IoV under cloud architecture needs to be protected by access control models. However, existing access control models have difficulty establishing the appropriate granularity of permissions in the face of large amounts of data in IoV. Moreover, the access control model may need to temporarily change user privileges to accommodate the dynamic nature of IoV scenarios, a requirement that is difficult to implement for traditional access control models. The unstable connection status of devices in IoV also creates problems for access control. The service (composed of role and attribute) based access control model (in IoV) S-RABAC (V), under the Cloud computing architecture, introduces a formal theoretical model. The model uses attribute grouping and prioritization mechanisms to form a hierarchical structure. The permission combination pattern in the hierarchical structure can avoid duplicate permissions and reduce the number of permissions while ensuring fine-grained permissions. Different layers in the model have different priorities, and when a user’s permission requires temporary changes, it can be adjusted to the corresponding layers according to the user’s priority. In addition, users are allowed to keep their assigned privileges for a period to avoid frequent access control because of unstable connections. We have implemented the proposed access control model in Alibaba Cloud Computing and given six example demonstrations. The experiment shows that this is an access control model that can protect IoV security more effectively. Various unique mechanisms in the model enable S-RABAC(V) to improve the overall access control efficiency. The model adds some extra features compared to ABAC and RBAC and can generate more access control decisions using the priority mechanism.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rong Jiang ◽  
Wenxuan Wu ◽  
Yimin Yu ◽  
Feng Ma

Technologies such as machine learning and artificial intelligence have brought about a tremendous change to biomedical computing and intelligence health care. As a principal component of the intelligence healthcare system, the hospital information system (HIS) has provided great convenience to hospitals and patients, but incidents of leaking private information of patients through HIS occasionally occur at times. Therefore, it is necessary to properly control excessive access behavior. To reduce the risk of patient privacy leakage when medical data are accessed, this article proposes a dynamic permission intelligent access control model that introduces credit line calculation. According to the target given by the doctor in HIS and the actual access record, the International Classification of Diseases (ICD)-10 code is used to describe the degree of correlation, and the rationality of the access is formally described by a mathematical formula. The concept of intelligence healthcare credit lines is redefined with relevance and time Windows. The access control policy matches the corresponding credit limit and credit interval according to the authorization rules to achieve the purpose of intelligent control. Finally, with the actual data provided by a Grade-III Level-A hospital in Kunming, the program code is written through machine learning and biomedical computing-related technologies to complete the experimental test. The experiment proves that the intelligent access control model based on credit computing proposed in this study can play a role in protecting the privacy of patients to a certain extent.


2021 ◽  
Vol 4 (9(112)) ◽  
pp. 6-14
Author(s):  
Sameera Sadey Shijer ◽  
Ahmad H. Sabry

The developments of wireless networks have directed to search for opportunities of a broad diversity of improved and new networking contributions. Wireless Asynchronous Transfer Mode (ATM) is a non-synchronous or random mode of transferring information. The advantages of circuit switching include dedicated connections and guaranteed traffic parameters and the benefits of packet switching are the efficiency at the physical layer and a more cost-effective design. ATM is the only protocol that offers the best of both communication methods. Although the Variable Bit-Rate (VBR) transmission presents a promising prospective of stable data quality, it is usually accompanied by network traffic overload and cell packet loss, which extensively weakens that potential. This work overcomes these concerns by developing a switching-based multiple access control model to improve the data transmission performance of wireless ATM. Therefore, this work discusses the effectiveness of the developed approach to minimize the cell packet losses and network traffic overload in wireless ATM. Three control access is processed; polling, token passing, and reservation algorithms for collision avoidance. The reservation stage reserves the data before sending, which includes two timeline intervals; a fixed-time reservation period, and variable data transmission interval. Using OPNET 10.5, the results show that the presented switching-based multiple access control model can achieve a throughput value of 98.3 %, data transmission delay of about 40.2 ms, and 0.024 % of packet losses during data transmission between the source and destination. It is demonstrated that the introduced method effectively transmits information without creating any network complexity and delay


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Rong Jiang ◽  
Yang Xin ◽  
Huiping Cheng ◽  
Wenxuan Wu

The professionalism and complexity of medical big data and the expensiveness of acquiring medical knowledge make it difficult for policymakers to judge whether the information accessed by doctors is necessary from a professional perspective and to formulate accurate access control strategies. To solve the above problems, this paper proposes a T-RBAC (trust-role based access control) model based on two-dimensional dynamic trust assessment, Using AHP and Grey theory to quantify the role attribute trust in the dimension of the doctor’s own attributes, Using Euler’s measurement method and probability statistics to quantify doctors’ behavioral trust in the dimension of historical behavior, then, the trust rule base performs hierarchical authorization based on the comprehensive trust value obtained by the weighted average. Multiattribute trust comprehensive evaluation makes the access control model have finer access granularity and higher security. At the same time, the introduction of time decay function and penalty function enhances the model’s sensitivity, dynamics, and resistance to bleaching attacks.


Sign in / Sign up

Export Citation Format

Share Document