Isolation and characterization of cartilage proteoglycans immunoreactive with an antibody to skin proteodermatan sulfate core protein

1985 ◽  
Vol 129 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Satoshi Onodera ◽  
Yutaka Nagai
2014 ◽  
Vol 88 (16) ◽  
pp. 9287-9296 ◽  
Author(s):  
J. Perez-Vargas ◽  
R. C. Vaughan ◽  
C. Houser ◽  
K. M. Hastie ◽  
C. C. Kao ◽  
...  

1992 ◽  
Vol 285 (3) ◽  
pp. 857-862 ◽  
Author(s):  
K Suzuki ◽  
K Shimizu ◽  
T Hamamoto ◽  
Y Nakagawa ◽  
T Murachi ◽  
...  

Degradation of cartilage proteoglycans was investigated under neutral conditions (pH 7.5) by using pig kidney calpain II (EC 3.4.22.17; Ca(2+)-dependent cysteine proteinase). Aggregate and monomer degradation reached a maximum in 5 min at 30 degrees C when the substrate/enzyme ratio was less than 1000:1. The mode of degradation was limited proteolysis of the core protein; the size of the products was larger than that of papain-digested products and comparable with that of trypsin-digested products. The hyaluronic acid-binding region was lost from the major glycosaminoglycan-bearing region after incubation with calpain II. Calpains thus may affect the form of proteoglycans in connective tissue. Ca(2+)-dependent proteoglycan degradation was unique in that proteoglycans adsorb large amounts of Ca2+ ions rapidly before activation of calpain II: 1 mg of pig cartilage proteoglycan monomer adsorbed 1.3-1.6 mu equiv. of Ca2+ ions before activation of calpain II, which corresponds to half the sum of anion groups in glycosaminoglycan side chains. This adsorption of Ca2+ was lost after solvolysis of proteoglycan monomer with methanol/50 mM-HCl, which was used to desulphate glycosaminoglycans. Therefore cartilage proteoglycans are not merely the substrates of proteolysis, but they may regulate the activation of Ca(2+)-dependent enzymes including calpains through tight chelation of Ca2+ ions between glycosaminoglycan side chains.


1987 ◽  
Vol 248 (3) ◽  
pp. 735-740 ◽  
Author(s):  
C Webber ◽  
T T Glant ◽  
P J Roughley ◽  
A R Poole

After chromatography on Sepharose CL-2B under associative conditions, high-buoyant-density human articular-cartilage proteoglycans were analysed biochemically and by radioimmunoassay with monoclonal antibodies to a core-protein-related epitope and to keratan sulphate. An examination of proteoglycans from individuals of different ages revealed the presence at 1 year of mainly a single polydisperse population containing chondroitin sulphate (uronic acid) and keratan sulphate. From 4 years onwards a smaller keratan sulphate-rich and chondroitin sulphate-deficient population appears in increasing amounts until 15 years. At the same time the larger population shows a progressive decrease in size from 1 year onward. By 23 years and after the proportion of keratan sulphate in the larger chondroitin sulphate-rich proteoglycan increases. Both adult proteoglycan populations are shown immunologically to aggregate with hyaluronic acid, with the smaller showing a greater degree of interaction. The larger population is richer in serine and glycine, and the smaller population contains more glutamic acid/glutamine, alanine, phenylalanine, lysine and arginine; its protein content is also higher. Whether the larger post-natal population represents a different gene product from the single polydisperse population found in the human fetus, which has a different amino acid composition, remains to be established. The smaller population, which represents approximately one-third the mass of the larger population in the adult, may represent a degradation product of the larger population, in which the hyaluronic acid-binding region and keratan sulphate-rich region are conserved.


2000 ◽  
Vol 31 (2) ◽  
pp. 149-149 ◽  
Author(s):  
T Tozaki ◽  
H Kakoi ◽  
S Mashima ◽  
K Hirota ◽  
T Hasegawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document