Complementary energy method for cylindrical shells using second order stress functions

1993 ◽  
Vol 108 (1-2) ◽  
pp. 147-163 ◽  
Author(s):  
E. Berto´ti
1965 ◽  
Vol 91 (4) ◽  
pp. 203-209
Author(s):  
Alan Jennings ◽  
Mark Levinson ◽  
Thomas M. Charlton

2013 ◽  
Vol 437 ◽  
pp. 475-480
Author(s):  
Bang Hui Yin ◽  
Min Qing Wang

The ANSYS harmonic response results are post-processed with the energy method to obtain the damping loss factor (DLF) of different types of free damping structures. Firstly, the DLF of free damping cylindrical shell in air is compared with DLF of free damping plate in air. Secondly, the DLF of free damping cylindrical shell with stiffened ribs in air is compared with that without stiffened ribs in air. Thirdly, the DLF of free damping cylindrical shell in water is compared with the DLF of free damping plate in water. Fourthly, the DLF of free damping cylindrical shell with stiffened ribs in water is compared with that without stiffened ribs in water. In the end, based on the above analysis, the backing design problem in air and water are discussed. Studies have shown that: DLF of free damping cylindrical shell is close to that of free damping plate in air; DLF of free damping cylindrical shell with stiffened ring ribs is close to that without stiffened ring ribs in air; When testing free damping cylindrical shells DLF in air, plate with the same thickness can be used as the backing; DLF of free damping plate is close to that of free damping cylindrical shell in water; DLF of free damping cylindrical shell with stiffened ring ribs is close to that without stiffened ring ribs in water; When testing free damping cylindrical shells DLF in water, plate with the same thickness can be used as the backing.


1966 ◽  
Vol 1966 (134) ◽  
pp. 14-32 ◽  
Author(s):  
Tokuya Yamasaki ◽  
Toshiaki Ota ◽  
Nobutaka Ishikawa

2008 ◽  
Vol 47-50 ◽  
pp. 1023-1026
Author(s):  
Yao Dai ◽  
Chang Qing Sun ◽  
Sun Qi ◽  
Wei Tan

Analytical expressions for crack-tip higher order stress functions for a plane crack in a special functionally graded material (FGM), which has an variation of elastic modulus in 1 2 power form along the gradient direction, are obtained through an asymptotic analysis. The Poisson’s ratio of the FGM is assumed to be constant in the analysis. The higher order fields in the asymptotic expansion display the influence of non-homogeneity on the structure of crack-tip fields obviously. Furthermore, it can be seen from expressions of higher order stress fields that at least three terms must be considered in the case of FGMs in order to explicitly account for non-homogeneity effects on the crack- tip stress fields. These results provide the basis for fracture analysis and engineering applications of this FGM.


Sign in / Sign up

Export Citation Format

Share Document