FUNCTION SPACE CONTROLLABILITY OF RETARDED SYSTEMS: A DERIVATION FROM ABSTRACT OPERATOR CONDITIONS

1977 ◽  
pp. 453-457 ◽  
Author(s):  
A. Manitius ◽  
R. Triggiani
Author(s):  
Neng-Yu Zhang ◽  
Bruce F. McEwen ◽  
Joachim Frank

Reconstructions of asymmetric objects computed by electron tomography are distorted due to the absence of information, usually in an angular range from 60 to 90°, which produces a “missing wedge” in Fourier space. These distortions often interfere with the interpretation of results and thus limit biological ultrastructural information which can be obtained. We have attempted to use the Method of Projections Onto Convex Sets (POCS) for restoring the missing information. In POCS, use is made of the fact that known constraints such as positivity, spatial boundedness or an upper energy bound define convex sets in function space. Enforcement of such constraints takes place by iterating a sequence of function-space projections, starting from the original reconstruction, onto the convex sets, until a function in the intersection of all sets is found. First applications of this technique in the field of electron microscopy have been promising.To test POCS on experimental data, we have artificially reduced the range of an existing projection set of a selectively stained Golgi apparatus from ±60° to ±50°, and computed the reconstruction from the reduced set (51 projections). The specimen was prepared from a bull frog spinal ganglion as described by Lindsey and Ellisman and imaged in the high-voltage electron microscope.


2007 ◽  
Vol 7 (3) ◽  
pp. 239-254 ◽  
Author(s):  
I.H. Sloan

Abstract Finite-order weights have been introduced in recent years to describe the often occurring situation that multivariate integrands can be approximated by a sum of functions each depending only on a small subset of the variables. The aim of this paper is to demonstrate the danger of relying on this structure when designing lattice integration rules, if the true integrand has components lying outside the assumed finiteorder function space. It does this by proving, for weights of order two, the existence of 3-dimensional lattice integration rules for which the worst case error is of order O(N¯½), where N is the number of points, yet for which there exists a smooth 3- dimensional integrand for which the integration rule does not converge.


Sign in / Sign up

Export Citation Format

Share Document