Computational Methods in Applied Mathematics
Latest Publications


TOTAL DOCUMENTS

737
(FIVE YEARS 173)

H-INDEX

24
(FIVE YEARS 4)

Published By Walter De Gruyter Gmbh

1609-9389, 1609-4840

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Subhankar Mondal ◽  
M. Thamban Nair

Abstract An inverse problem of identifying the diffusion coefficient in matrix form in a parabolic PDE is considered. Following the idea of natural linearization, considered by Cao and Pereverzev (2006), the nonlinear inverse problem is transformed into a problem of solving an operator equation where the operator involved is linear. Solving the linear operator equation turns out to be an ill-posed problem. The method of Tikhonov regularization is employed for obtaining stable approximations and its finite-dimensional analysis is done based on the Galerkin method, for which an orthogonal projection on the space of matrices with entries from L 2 ⁢ ( Ω ) L^{2}(\Omega) is defined. Since the error estimates in Tikhonov regularization method rely heavily on the adjoint operator, an explicit representation of adjoint of the linear operator involved is obtained. For choosing the regularizing parameter, the adaptive technique is employed in order to obtain order optimal rate of convergence. For the relaxed noisy data, we describe a procedure for obtaining a smoothed version so as to obtain the error estimates. Numerical experiments are carried out for a few illustrative examples.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dilek Erkmen ◽  
Alexander E. Labovsky

Abstract We propose and investigate two regularization models for fluid flows at higher Reynolds numbers. Both models are based on the reduced ADM regularization (RADM). One model, which we call DC-RADM (deferred correction for reduced approximate deconvolution model), aims to improve the temporal accuracy of the RADM. The second model, denoted by RADC (reduced approximate deconvolution with correction), is created with a more systemic approach. We treat the RADM regularization as a defect in approximating the true solution of the Navier–Stokes equations (NSE) and then correct for this defect, using the defect correction algorithm. Thus, the resulting RADC model can be viewed as a first member of the class that we call “LESC-reduced”, where one starts with a regularization that resembles a Large Eddy Simulation turbulence model and then improves it with a defect correction technique. Both models are investigated theoretically and numerically, and the RADC is shown to outperform the DC-RADM model both in terms of convergence rates and in terms of the quality of the produced solution.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lateef Olakunle Jolaoso ◽  
Adeolu Taiwo ◽  
Timilehin Opeyemi Alakoya ◽  
Oluwatosin Temitope Mewomo ◽  
Qiao-Li Dong

Abstract In this paper, we introduce a Totally Relaxed Self-adaptive Subgradient Extragradient Method (TRSSEM) with Halpern iterative scheme for finding a common solution of a Variational Inequality Problem (VIP) and the fixed point of quasi-nonexpansive mapping in a 2-uniformly convex and uniformly smooth Banach space. The TRSSEM does not require the computation of projection onto the feasible set of the VIP; instead, it uses a projection onto a finite intersection of sub-level sets of convex functions. The advantage of this is that any general convex feasible set can be involved in the VIP. We also introduce a modified TRSSEM which involves the projection onto the set of a convex combination of some convex functions. Under some mild conditions, we prove a strong convergence theorem for our algorithm and also present an application of our theorem to the approximation of a solution of nonlinear integral equations of Hammerstein’s type. Some numerical examples are presented to illustrate the performance of our method as well as comparing it with some related methods in the literature. Our algorithm is simple and easy to implement for computation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ulrich Langer ◽  
Olaf Steinbach ◽  
Huidong Yang

Abstract We consider elliptic distributed optimal control problems with energy regularization. Here the standard L 2 {L_{2}} -norm regularization is replaced by the H - 1 {H^{-1}} -norm leading to more focused controls. In this case, the optimality system can be reduced to a single singularly perturbed diffusion-reaction equation known as differential filter in turbulence theory. We investigate the error between the finite element approximation u ϱ ⁢ h {u_{\varrho h}} to the state u and the desired state u ¯ {\overline{u}} in terms of the mesh-size h and the regularization parameter ϱ. The choice ϱ = h 2 {\varrho=h^{2}} ensures optimal convergence the rate of which only depends on the regularity of the target function u ¯ {\overline{u}} . The resulting symmetric and positive definite system of finite element equations is solved by the conjugate gradient (CG) method preconditioned by algebraic multigrid (AMG) or balancing domain decomposition by constraints (BDDC). We numerically study robustness and efficiency of the AMG preconditioner with respect to h, ϱ, and the number of subdomains (cores) p. Furthermore, we investigate the parallel performance of the BDDC preconditioned CG solver.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jérôme Droniou ◽  
Liam Yemm

Abstract We design a Hybrid High-Order (HHO) scheme for the Poisson problem that is fully robust on polytopal meshes in the presence of small edges/faces. We state general assumptions on the stabilisation terms involved in the scheme, under which optimal error estimates (in discrete and continuous energy norms, as well as L 2 L^{2} -norm) are established with multiplicative constants that do not depend on the maximum number of faces in each element, or the relative size between an element and its faces. We illustrate the error estimates through numerical simulations in 2D and 3D on meshes designed by agglomeration techniques (such meshes naturally have elements with a very large numbers of faces, and very small faces).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tomás Chacón Rebollo ◽  
Macarena Gómez Mármol ◽  
Isabel Sánchez Muñoz

Abstract In this paper, we study a finite element discretization of a Level Set Method formulation of free-surface flow. We consider an Euler semi-implicit discretization in time and a Galerkin discretization of the level set function. We regularize the density and viscosity of the flow across the interface, following the Level Set Method. We prove stability in natural norms when the viscosity and density vary from one to the other layer and optimal error estimates for smooth solutions when the layers have the same density. We present some numerical tests for academic flows.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Riccardo Milani ◽  
Jérôme Bonelle ◽  
Alexandre Ern

Abstract We investigate artificial compressibility (AC) techniques for the time discretization of the incompressible Navier–Stokes equations. The space discretization is based on a lowest-order face-based scheme supporting polytopal meshes, namely discrete velocities are attached to the mesh faces and cells, whereas discrete pressures are attached to the mesh cells. This face-based scheme can be embedded into the framework of hybrid mixed mimetic schemes and gradient schemes, and has close links to the lowest-order version of hybrid high-order methods devised for the steady incompressible Navier–Stokes equations. The AC time-stepping uncouples at each time step the velocity update from the pressure update. The performances of this approach are compared against those of the more traditional monolithic approach which maintains the velocity-pressure coupling at each time step. We consider both first-order and second-order time schemes and either an implicit or an explicit treatment of the nonlinear convection term. We investigate numerically the CFL stability restriction resulting from an explicit treatment, both on Cartesian and polytopal meshes. Finally, numerical tests on large 3D polytopal meshes highlight the efficiency of the AC approach and the benefits of using second-order schemes whenever accurate discrete solutions are to be attained.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rainer Schneckenleitner ◽  
Stefan Takacs

Abstract In this paper, we develop a convergence theory for Dual-Primal Isogeometric Tearing and Interconnecting (IETI-DP) solvers for isogeometric multi-patch discretizations of the Poisson problem, where the patches are coupled using discontinuous Galerkin. The presented theory provides condition number bounds that are explicit in the grid sizes ℎ and in the spline degrees 𝑝. We give an analysis that holds for various choices for the primal degrees of freedom: vertex values, edge averages, and a combination of both. If only the vertex values or both vertex values and edge averages are taken as primal degrees of freedom, the condition number bound is the same as for the conforming case. If only the edge averages are taken, both the convergence theory and the experiments show that the condition number of the preconditioned system grows with the ratio of the grid sizes on neighboring patches.


Sign in / Sign up

Export Citation Format

Share Document