scholarly journals Meromorphic projective structures, grafting and the monodromy map

2021 ◽  
Vol 383 ◽  
pp. 107673
Author(s):  
Subhojoy Gupta ◽  
Mahan Mj
1993 ◽  
Vol 16 (4) ◽  
pp. 695-708
Author(s):  
Jharna D. Sengupta

LetΓbe a Fuchsian group acting on the upper half-planeUand having signature{p,n,0;v1,v2,…,vn};2p−2+∑j=1n(1−1vj)>0.LetT(Γ)be the Teichmüller space ofΓ. Then there exists a vector bundleℬ(T(Γ))of rank3p−3+noverT(Γ)whose fibre over a pointt∈T(Γ)representingΓtis the space of bounded quratic differentialsB2(Γt)forΓt. LetHom(Γ,G)be the set of all homomorphisms fromΓinto the Mbius groupG.For a given(t,ϕ)∈ℬ(T(Γ))we get an equivalence class of projective structures and a conjugacy class of a homomorphismx∈Hom(Γ,G). Therefore there is a well defined mapΦ:ℬ(T(Γ))→Hom(Γ,G)/G,Φis called the monodromy map. We prove that the monromy map is hommorphism. The casen=0gives the previously known result by Earle, Hejhal Hubbard.


2017 ◽  
Vol 210 (3) ◽  
pp. 759-814 ◽  
Author(s):  
Marco Bertola ◽  
Dmitry Korotkin ◽  
Chaya Norton

Nonlinearity ◽  
2011 ◽  
Vol 25 (1) ◽  
pp. 1-36 ◽  
Author(s):  
S Post ◽  
A M Grundland

Author(s):  
Daniel M. Gallo ◽  
R. Michael Porter

Sign in / Sign up

Export Citation Format

Share Document