Improving convergence by optimizing the condition number of the stiffness matrices arising from least-squares finite element methods

2021 ◽  
Vol 385 ◽  
pp. 114023
Author(s):  
Zhengliu Zhou ◽  
Scott Keller
2000 ◽  
Author(s):  
Lonny L. Thompson ◽  
Sridhar Sankar

Abstract The application of stabilized finite element methods to model the vibration of elastic plates coupled with an acoustic fluid medium is considered. New stabilized methods based on the Hellinger-Reissner variational principle with a generalized least-squares modification are developed which yield improvement in accuracy over the Galerkin and Galerkin Generalized Least Squares (GGLS) finite element methods for both in vacuo and acoustic fluid-loaded Reissner-Mindlin plates. Through judicious selection of design parameters this formulation provides a consistent framework for enhancing the accuracy of mixed Reissner-Mindlin plate elements. Combined with stabilization methods for the acoustic fluid, the method presents a new framework for accurate modeling of acoustic fluid-loaded structures. The technique of complex wave-number dispersion analysis is used to examine the accuracy of the discretized system in the representation of free-waves for fluid-loaded plates. The influence of different finite element approximations for the fluid-loaded plate system are examined and clarified. Improved methods are designed such that the finite element dispersion relations closely match each branch of the complex wavenumber loci for fluid-loaded plates. Comparisons of finite element dispersion relations demonstrate the superiority of the hybrid least-squares (HLS) plate elements combined with stabilized methods for the fluid over standard Galerkin methods with mixed interpolation and shear projection (MITC4) and GGLS methods.


Author(s):  
Giuseppe C. A. DeRose ◽  
Alejandro R. Díaz

Abstract A new method to solve topology optimization problems is discussed. This method is based on the use of a Wavelet-Galerkin scheme to solve the elasticity problem associated with each iteration of the topology optimization sequence. Typically, finite element methods are used for this analysis. However, as the mesh size grows, the computational requirements necessary to solve the finite element equations increase beyond the capacity of current desk top computers. This problem is inherent to finite element methods, as the condition number of finite element matrices increases with mesh size. Wavelet-Galerkin techniques are used to replace standard finite element methods in an attempt to alleviate this problem. Examples demonstrating the performance of the new methodology are presented.


2013 ◽  
Vol 51 (4) ◽  
pp. 2214-2237 ◽  
Author(s):  
K. Liu ◽  
T. A. Manteuffel ◽  
S. F. McCormick ◽  
J. W. Ruge ◽  
L. Tang

Sign in / Sign up

Export Citation Format

Share Document