elasticity problem
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 24)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 14 (1) ◽  
pp. 114-122
Author(s):  
Volodymyr Shymanskyi ◽  
Yaroslav Sokolovskyy

Aims: The aim of this study was to develop the mathematical models of the linear elasticity theory of biomaterials by taking into account their fractal structure. This study further aimed to construct a variational formulation of the problem, obtain the main relationships of the finite element method to calculate the rheological characteristics of a biomaterial with a fractal structure, and develop application software for calculating the components of the stress-strain state of biomaterials while considering their fractal structure. The obtained results were analyzed. Background: The development of adequate mathematical models of the linear elasticity theory for biomaterials with a fractal structure is an urgent scientific task. Finding its solution will make it possible to analyze the rheological behavior of biomaterials exposed to external loads by taking into account the existing effects of memory, spatial non-locality, self-organization, and deterministic chaos in the material. Objective: The objective of this study was the deformation process of biomaterials with a fractal structure under external load. Methods: The equations of the linear elasticity theory for the construction of the mathematical models of the deformation process of biomaterials under external load were used. Mathematical apparatus of integro-differentiation of fractional order to take into account the fractal structure of the biomaterial was used. A variational formulation of the linear elasticity problem while taking into account the fractal structure of the biomaterial was formulated. The finite element method with a piecewise linear basis for finding an approximate solution to the problem was used. Results: The main relations of the linear elasticity problem, which takes into account the fractal structure of the biomaterial, were obtained. A variational formulation of the problem was constructed. The main relations of the finite-element calculation of the linear elasticity problem of a biomaterial with a fractal structure using a piecewise-linear basis are found. The main components of the stress-strain state of the biomaterial exposed to external loads are found. Conclusion: Using the mathematical apparatus of integro-differentiation of fractional order in the construction of the mathematical models of the deformation process of biomaterials with a fractal structure makes it possible to take into account the existing effects of memory, spatial non-locality, self-organization, and deterministic chaos in the material. Also, this approach makes it possible to determine the residual stresses in the biomaterial, which play an important role in the appearance of stresses during repeated loads.


Author(s):  
Philippe Devloo ◽  
Agnaldo Farias ◽  
Sônia Gomes ◽  
Antonio dos Santos ◽  
Weslley Pereira ◽  
...  

This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing  elementwise rigid body modes.  In the second level, the methods are made effective by solving completely independent local boundary Neumann elasticity problems written in a mixed form with weak symmetry enforced via the rotation multiplier. Since the finite-dimensional space for the traction variable constraints the local stress approximations, the discrete stress field lies in the H (div) space globally and stays in local equilibrium with external forces. We propose different choices to approximate local problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices generate the family of multiscale finite element methods for which stability and convergence are proved in a unified framework. Notably, we prove that the methods are optimal and high-order convergent in the natural norms. Also, it emerges that the approximate displacement and stress divergence are super-convergent in the L 2 -norm. Numerical verifications assess theoretical results and highlight the high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Fleurianne Bertrand ◽  
Daniele Boffi ◽  
Rui Ma

Abstract In this paper, we study the approximation of eigenvalues arising from the mixed Hellinger–Reissner elasticity problem by using a simple finite element introduced recently by one of the authors. We prove that the method converges when a residual type error estimator is considered and that the estimator decays optimally with respect to the number of degrees of freedom. A postprocessing technique originally proposed in a different context is discussed and tested numerically.


2021 ◽  
Vol 243 ◽  
pp. 106400
Author(s):  
V.A. Rukavishnikov ◽  
A.O. Mosolapov ◽  
E.I. Rukavishnikova

Sign in / Sign up

Export Citation Format

Share Document