scholarly journals Efficient matrix computation for isogeometric discretizations with hierarchical B-splines in any dimension

2022 ◽  
Vol 388 ◽  
pp. 114210
Author(s):  
Maodong Pan ◽  
Bert Jüttler ◽  
Felix Scholz
Keyword(s):  
2021 ◽  
Vol 209 ◽  
pp. 107430
Author(s):  
Michael F. Rehme ◽  
Fabian Franzelin ◽  
Dirk Pflüger

Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 50
Author(s):  
Charlotte Froese Fischer

The paper reviews the history of B-spline methods for atomic structure calculations for bound states. It highlights various aspects of the variational method, particularly with regard to the orthogonality requirements, the iterative self-consistent method, the eigenvalue problem, and the related sphf, dbsr-hf, and spmchf programs. B-splines facilitate the mapping of solutions from one grid to another. The following paper describes a two-stage approach where the goal of the first stage is to determine parameters of the problem, such as the range and approximate values of the orbitals, after which the level of accuracy is raised. Once convergence has been achieved the Virial Theorem, which is evaluated as a check for accuracy. For exact solutions, the V/T ratio for a non-relativistic calculation is −2.


2021 ◽  
Vol 381 ◽  
pp. 113779
Author(s):  
Wenbin Hou ◽  
Kai Jiang ◽  
Xuefeng Zhu ◽  
Yuanxing Shen ◽  
Ping Hu

2021 ◽  
Vol 76 (3) ◽  
Author(s):  
Peter Massopust
Keyword(s):  

AbstractThe existence of fundamental cardinal exponential B-splines of positive real order $$\sigma $$ σ is established subject to two conditions on $$\sigma $$ σ and their construction is implemented. A sampling result for these fundamental cardinal exponential B-splines is also presented.


2009 ◽  
Vol 26 (1) ◽  
pp. 75-81 ◽  
Author(s):  
S. Schaefer ◽  
R. Goldman
Keyword(s):  

2007 ◽  
Vol 44 (3) ◽  
pp. 278-285 ◽  
Author(s):  
Virgilio F. Ferrario ◽  
Fabrizio Mian ◽  
Redento Peretta ◽  
Riccardo Rosati ◽  
Chiarella Sforza

Objective: To compare three-dimensional nasal measurements directly made on subjects to those made on plaster casts, and nasal dimensions obtained with a surface-based approach to values obtained with a landmark representation. Methods: Soft-tissue nasal landmarks were directly digitized on 20 healthy adults. Stone casts of their noses were digitized and mathematically reconstructed using nonuniform rational B-splines (NURBS) curves. Linear distances, angles, volumes and surface areas were computed using facial landmarks and NURBS-reconstructed models (surface-based approach). Results: Measurements on the stone casts were somewhat smaller than values obtained directly from subjects (differences between −0.05 and −1.58 mm). Dahlberg's statistic ranged between 0.73 and 1.47 mm. Significant (p < .05) t values were found for 4 of 15 measurements. The surface-based approach gave values 3.5 (volumes) and 2.1 (surface area) times larger than those computed with the landmark-based method. The two values were significantly related (volume, r = 0.881; surface, r = 0.924; p < .001), the resulting equations estimated actual values well (mean difference, volume −0.01 mm3, SD 1.47, area 0.05 cm2, SD 1.44); limits of agreement between −2.89 and 2.87 mm3 (volume); −2.88 and 2.78 cm2 (area). Conclusions: Considering the characteristics of the two methods, and for practical purposes, nasal distances and angles obtained on plaster models were comparable to digital data obtained directly from subjects. Surface areas and volumes were best obtained using a surface-based approach, but could be estimated using data provided by the landmark representation.


Sign in / Sign up

Export Citation Format

Share Document