LP-based disaggregation approaches to solving the open pit mining production scheduling problem with block processing selectivity

2009 ◽  
Vol 36 (4) ◽  
pp. 1064-1089 ◽  
Author(s):  
Natashia Boland ◽  
Irina Dumitrescu ◽  
Gary Froyland ◽  
Ambros M. Gleixner
2020 ◽  
Vol 27 (9) ◽  
pp. 2479-2493
Author(s):  
Kamyar Tolouei ◽  
Ehsan Moosavi ◽  
Amir Hossein Bangian Tabrizi ◽  
Peyman Afzal ◽  
Abbas Aghajani Bazzazi

Author(s):  
F. Schenk ◽  
A. Tscharf ◽  
G. Mayer ◽  
F. Fraundorfer

<p><strong>Abstract.</strong> In open pit mining it is essential for processing and production scheduling to receive fast and accurate information about the fragmentation of a muck pile after a blast. In this work, we propose a novel machine-learning method that characterizes the muck pile directly from UAV images. In contrast to state-of-the-art approaches, that require heavy user interaction, expert knowledge and careful threshold settings, our method works fully automatically. We compute segmentation masks, bounding boxes and confidence values for each individual fragment in the muck pile on multiple scales to generate a globally consistent segmentation. Additionally, we recorded lab and real-world images to generate our own dataset for training the network. Our method shows very promising quantitative and qualitative results in all our experiments. Further, the results clearly indicate that our method generalizes to previously unseen data.</p>


2020 ◽  
Vol 21 (4) ◽  
pp. 1717-1743
Author(s):  
Christian Both ◽  
Roussos Dimitrakopoulos

Abstract This article presents a novel stochastic optimization model that simultaneously optimizes the short-term extraction sequence, shovel relocation, scheduling of a heterogeneous hauling fleet, and downstream allocation of extracted materials in open-pit mining complexes. The proposed stochastic optimization formulation considers geological uncertainty in addition to uncertainty related to equipment performances and truck cycle times. The method is applied at a real-world mining complex, stressing the benefits of optimizing the short-term production schedule and fleet management simultaneously. Compared to a conventional two-step approach, where the production schedule is optimized first before optimizing the allocation of the mining fleet, the costs generated by shovel movements are reduced by 56% and lost production due to shovel relocation is cut by 54%. Furthermore, the required number of trucks shows a more balanced profile, reducing total truck operational costs by 3.1% over an annual planning horizon, as well as the required haulage capacity in the most haulage-intense periods by 25%. A metaheuristic solution method is utilized to solve the large optimization problem in a reasonable timespan.


Sign in / Sign up

Export Citation Format

Share Document