Vertex primitive s-transitive Cayley graphs

2020 ◽  
Vol 343 (9) ◽  
pp. 111966
Author(s):  
Jing Jian Li ◽  
Jing Yang ◽  
Wen Ying Zhu
Author(s):  
CAI HENG LI ◽  
GUANG RAO ◽  
SHU JIAO SONG

Abstract Vertex-primitive self-complementary graphs were proved to be affine or in product action by Guralnick et al. [‘On orbital partitions and exceptionality of primitive permutation groups’, Trans. Amer. Math. Soc.356 (2004), 4857–4872]. The product action type is known in some sense. In this paper, we provide a generic construction for the affine case and several families of new self-complementary Cayley graphs are constructed.


Author(s):  
Ashwin Sah ◽  
Mehtaab Sawhney ◽  
Yufei Zhao

Abstract Does every $n$-vertex Cayley graph have an orthonormal eigenbasis all of whose coordinates are $O(1/\sqrt{n})$? While the answer is yes for abelian groups, we show that it is no in general. On the other hand, we show that every $n$-vertex Cayley graph (and more generally, vertex-transitive graph) has an orthonormal basis whose coordinates are all $O(\sqrt{\log n / n})$, and that this bound is nearly best possible. Our investigation is motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s result to nonabelian groups.


2021 ◽  
Vol 53 (2) ◽  
pp. 527-551
Author(s):  
Lei Wang ◽  
Yin Liu ◽  
Yanxiong Yan

Sign in / Sign up

Export Citation Format

Share Document