ID: 3525204 ARTIFICIAL INTELLIGENCE AND VIDEO CAPSULE COLONOSCOPY: AUTOMATIC DETECTION OF BLOOD IN COLONIC LUMEN USING A CONVOLUCIONAL NEURAL NETWORK

2021 ◽  
Vol 93 (6) ◽  
pp. AB190-AB191
Author(s):  
João Afonso ◽  
Miguel M. Saraiva ◽  
Helder Cardoso ◽  
João Ferreira ◽  
Patrícia Andrade ◽  
...  
2020 ◽  
Vol 32 (3) ◽  
pp. 382-390 ◽  
Author(s):  
Akiyoshi Tsuboi ◽  
Shiro Oka ◽  
Kazuharu Aoyama ◽  
Hiroaki Saito ◽  
Tomonori Aoki ◽  
...  

2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S257-S258
Author(s):  
J Afonso ◽  
M Mascarenhas ◽  
T Ribeiro ◽  
H Cardoso ◽  
J Ferreira ◽  
...  

Abstract Background Conventional colonoscopy is the standard criterion for the diagnosis and staging of colonic disease, including inflammatory bowel disease (IBD). However, it has the risk of complications, including bleeding and perforation. Colon capsule endoscopy (CCE) is a minimally invasive alternative for patients refusing conventional colonoscopy or for whom the latter is contraindicated. However, reading CCE images is a time-consuming task and prone to diagnostic error. Detection of colonic blood is relevant for the diagnosis and assessment of the activity of IBD, particularly ulcerative colitis. An accurate and early diagnosis is essential as it directs subsequent treatment. Our aim was to develop an Artificial Intelligence (AI) algorithm, based on a multilayer Convolutional Neural Network (CNN), for automatic detection of blood and other significant lesions in the colonic lumen in CCE exams: Methods A total of 24 CCE exams (PillCam COLON 2®) from a single centre, performed between 2010–2020, were analysed. From these exams 7640 images (2915 normal mucosa, 3065 blood and 1660 mucosal lesions) were ultimately extracted. Two image datasets were created for CNN training and testing. These images were inserted in a CNN model with transfer of learning. The output provided by the CNN was compared to the classification provided by a consensus of specialists (Figure 1). Performance marks included sensitivity, specificity, positive and negative predictive values (PPV and NPV, respectively), accuracy and area under the receiving operator characteristics curve (AUROC). Results Blood was detected with a sensitivity and specificity of 97.2% and 99.9%, respectively. The AUROC for detection of blood was 1.00 (Figure 2). Detection of other findings had a sensitivity and specificity of 83.7% and 96.7%, respectively. The overall accuracy of the CNN was of 95.4%. Figure 1 - Output obtained from the application of the convolutional neural network. N: normal mucosa; B - blood or hematic residues; ML – mucosal lesions. Figure 2 – Receiver operating characteristic analyses of the network’s performance in the detection of normal mucosa, blood and colon mucosal lesions. AUROC – are under the receiver operating characteristic curve; N – normal colonic mucosa; B – blood; ML – mucosal lesions. Conclusion We developed a pioneer CNN for CCE which demonstrated high levels of efficiency for the automatic detection of blood and lesions with high clinical significance. The development of tools for automatic detection of these lesions may allow for minimization of diagnostic error and the time spent evaluating these exams.


2021 ◽  
Vol 09 (08) ◽  
pp. E1264-E1268
Author(s):  
Miguel Mascarenhas Saraiva ◽  
João P. S. Ferreira ◽  
Hélder Cardoso ◽  
João Afonso ◽  
Tiago Ribeiro ◽  
...  

AbstractColon capsule endoscopy (CCE) is a minimally invasive alternative to conventional colonoscopy. Most studies on CCE focus on colorectal neoplasia detection. The development of automated tools may address some of the limitations of this diagnostic tool and widen its indications for different clinical settings. We developed an artificial intelligence model based on a convolutional neural network (CNN) for the automatic detection of blood content in CCE images. Training and validation datasets were constructed for the development and testing of the CNN. The CNN detected blood with a sensitivity, specificity, and positive and negative predictive values of 99.8 %, 93.2 %, 93.8 %, and 99.8 %, respectively. The area under the receiver operating characteristic curve for blood detection was 1.00. We developed a deep learning algorithm capable of accurately detecting blood or hematic residues within the lumen of the colon based on colon CCE images.


Author(s):  
Miguel Mascarenhas Saraiva ◽  
Tiago Ribeiro ◽  
João Afonso ◽  
João P.S. Ferreira ◽  
Hélder Cardoso ◽  
...  

<b><i>Introduction:</i></b> Capsule endoscopy has revolutionized the management of patients with obscure gastrointestinal bleeding. Nevertheless, reading capsule endoscopy images is time-consuming and prone to overlooking significant lesions, thus limiting its diagnostic yield. We aimed to create a deep learning algorithm for automatic detection of blood and hematic residues in the enteric lumen in capsule endoscopy exams. <b><i>Methods:</i></b> A convolutional neural network was developed based on a total pool of 22,095 capsule endoscopy images (13,510 images containing luminal blood and 8,585 of normal mucosa or other findings). A training dataset comprising 80% of the total pool of images was defined. The performance of the network was compared to a consensus classification provided by 2 specialists in capsule endoscopy. Subsequently, we evaluated the performance of the network using an independent validation dataset (20% of total image pool), calculating its sensitivity, specificity, accuracy, and precision. <b><i>Results:</i></b> Our convolutional neural network detected blood and hematic residues in the small bowel lumen with an accuracy and precision of 98.5 and 98.7%, respectively. The sensitivity and specificity were 98.6 and 98.9%, respectively. The analysis of the testing dataset was completed in 24 s (approximately 184 frames/s). <b><i>Discussion/Conclusion:</i></b> We have developed an artificial intelligence tool capable of effectively detecting luminal blood. The development of these tools may enhance the diagnostic accuracy of capsule endoscopy when evaluating patients presenting with obscure small bowel bleeding.


Sign in / Sign up

Export Citation Format

Share Document