Learning Algorithm
Recently Published Documents





2022 ◽  
Vol 306 ◽  
pp. 118063
Wei Zhou ◽  
Yue Wu ◽  
Xiang Huang ◽  
Renzhi Lu ◽  
Hai-Tao Zhang

2021 ◽  
Vol 72 ◽  
pp. 507-531
Georgios Birmpas ◽  
Jiarui Gan ◽  
Alexandros Hollender ◽  
Francisco J. Marmolejo-Cossío ◽  
Ninad Rajgopal ◽  

Recent results have shown that algorithms for learning the optimal commitment in a Stackelberg game are susceptible to manipulation by the follower. These learning algorithms operate by querying the best responses of the follower, who consequently can deceive the algorithm by using fake best responses, typically by responding according to fake payoffs that are different from the actual ones. For this strategic behavior to be successful, the main challenge faced by the follower is to pinpoint the fake payoffs that would make the learning algorithm output a commitment that benefits them the most. While this problem has been considered before, the related literature has only focused on a simple setting where the follower can only choose from a finite set of payoff matrices, thus leaving the general version of the problem unanswered. In this paper, we fill this gap by showing that it is always possible for the follower to efficiently compute (near-)optimal fake payoffs, for various scenarios of learning interaction between the leader and the follower. Our results also establish an interesting connection between the follower’s deception and the leader’s maximin utility: through deception, the follower can induce almost any (fake) Stackelberg equilibrium if and only if the leader obtains at least their maximin utility in this equilibrium.

2021 ◽  
Vol 11 (1) ◽  
Caroline Apra ◽  
Charlotte Caucheteux ◽  
Arthur Mensch ◽  
Jenny Mansour ◽  

AbstractReverse transcriptase polymerase chain reaction (RT-PCR) is a key tool to diagnose Covid-19. Yet it may not be the most efficient test in all patients. In this paper, we develop a clinical strategy for prescribing RT-PCR to patients based on data from COVIDOM, a French cohort of 54,000 patients with clinically suspected Covid-19, including 12,810 patients tested by RT-PCR. We use a machine-learning algorithm (decision tree) in order to predict RT-PCR results based on the clinical presentation. We show that symptoms alone are sufficient to predict RT-PCR outcome with a mean average precision of 86%. We identify combinations of symptoms that are predictive of RT-PCR positivity (90% for anosmia/ageusia) or negativity (only 30% of RT-PCR+ for a subgroup with cardiopulmonary symptoms): in both cases, RT-PCR provides little added diagnostic value. We propose a prescribing strategy based on clinical presentation that can improve the global efficiency of RT-PCR testing.

Manitosh Chourasiya ◽  
Prof. Devendra Singh Rathod

Sentiment analysis is called detecting emotions extracted from text features and is known as one of the most important parts of opinion extraction. Through this process, we can determine if a script is positive, negative or neutral. In this research, sentiment analysis is performed with textual data. A text feeling analyzer combines natural language processing (NLP) and machine learning techniques to assign weighted assessment scores to entities, subjects, subjects, and categories within a sentence or phrase. In expressing mood, the polarity of text reviews could be graded on a negative to positive scale using a learning algorithm. The current decade has seen significant developments in artificial intelligence, and the machine learning revolution has changed the entire AI industry. After all, machine learning techniques have become an integral part of any model in today's computing world. However, the ensemble to learning techniques is promise a high level of automation with the extraction of generalized rules for text and sentiment classification activities. This thesis aims to design and implement an optimized functionality matrix using to the ensemble learning for the sentiment classification and its applications.

2021 ◽  
Xianwang Li ◽  
Zhongxiang Huang ◽  
Wenhui Ning

Abstract Machine learning is gradually developed and applied to more and more fields. Intelligent manufacturing system is also an important system model that many companies and enterprises are designing and implementing. The purpose of this study is to evaluate and analyze the model design of Intelligent Manufacturing System Based on machine learning algorithm. The method of this study is to first obtain all the relevant attributes of the intelligent manufacturing system model, and then use machine learning algorithm to delete irrelevant attributes to prevent redundancy and deviation of neural network fitting, make the original probability distribution as close as possible to the distribution when using the selected attributes, and use the ratio of industry average to quantitative expression for measurable and obvious data indicators. As a result, the average running time of the intelligent manufacturing system is 17.35 seconds, and the genetic algorithm occupies 15.63 seconds. The machine learning network takes up 1.72 seconds. Under the machine learning algorithm, the training speed is very high, obviously higher than that of the genetic algorithm, and the BP network is 2.1% higher than the Elman algorithm. The evaluation running speed of the system model design is fast and the accuracy is high. This study provides a certain value for the model design evaluation and algorithm of various systems in the intelligent era.

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7071
Alejandro Medina-Santiago ◽  
Carlos Arturo Hernández-Gracidas ◽  
Luis Alberto Morales-Rosales ◽  
Ignacio Algredo-Badillo ◽  
Monica Amador García ◽  

The design of neural network architectures is carried out using methods that optimize a particular objective function, in which a point that minimizes the function is sought. In reported works, they only focused on software simulations or commercial complementary metal-oxide-semiconductor (CMOS), neither of which guarantees the quality of the solution. In this work, we designed a hardware architecture using individual neurons as building blocks based on the optimization of n-dimensional objective functions, such as obtaining the bias and synaptic weight parameters of an artificial neural network (ANN) model using the gradient descent method. The ANN-based architecture has a 5-3-1 configuration and is implemented on a 1.2 μm technology integrated circuit, with a total power consumption of 46.08 mW, using nine neurons and 36 CMOS operational amplifiers (op-amps). We show the results obtained from the application of integrated circuits for ANNs simulated in PSpice applied to the classification of digital data, demonstrating that the optimization method successfully obtains the synaptic weights and bias values generated by the learning algorithm (Steepest-Descent), for the design of the neural architecture.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Qiang Zhao

The archeological sites are a heritage that we have gained from our ancestors. These sites are crucial for understanding the past and the way of life of people during those times. The monuments and the immovable relics of ancient times are a getaway to the past. The critical cultural relics however actually over the years have faced the brunt of nature. The environmental conditions have deteriorated the condition of many important immovable relics over the years since these could not be just shifted away. People also move around the ancient cultural relics that may also deform these relics. The machine learning algorithms were used to identify the location of the relics. The data from the satellite images were used and implemented machine learning algorithm to maintain and monitor the relics. This research study dwells into the importance of the area from a research point of view and utilizes machine learning techniques called CaffeNet and deep convolutional neural network. The result showed that 96% accuracy of predicting the image, which can be used for tracking human activity, protects heritage sites in a unique way.

2021 ◽  
Vol 233 (5) ◽  
pp. e191
Zain I. Khalpey ◽  
Amina Khalpey ◽  
Bhavisha Modi ◽  
Jessa L. Deckwa

Sign in / Sign up

Export Citation Format

Share Document