scholarly journals Best approximation of functions by log-polynomials

2021 ◽  
pp. 109344
Author(s):  
David Alonso-Gutiérrez ◽  
Bernardo González Merino ◽  
Rafael Villa
1982 ◽  
Vol 32 (5) ◽  
pp. 845-848
Author(s):  
N. V. Miroshin ◽  
V. V. Khromov

2020 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Gabdolla Akishev

In this paper, we consider the anisotropic Lorentz space \(L_{\bar{p}, \bar\theta}^{*}(\mathbb{I}^{m})\) of periodic functions of \(m\) variables. The Besov space \(B_{\bar{p}, \bar\theta}^{(0, \alpha, \tau)}\) of functions with logarithmic smoothness is defined. The aim of the paper is to find an exact order of the best approximation of functions from the class \(B_{\bar{p}, \bar\theta}^{(0, \alpha, \tau)}\) by trigonometric polynomials under different relations between the parameters \(\bar{p}, \bar\theta,\) and \(\tau\).The paper consists of an introduction and two sections. In the first section, we establish a sufficient condition for a function \(f\in L_{\bar{p}, \bar\theta^{(1)}}^{*}(\mathbb{I}^{m})\) to belong to the space \(L_{\bar{p}, \theta^{(2)}}^{*}(\mathbb{I}^{m})\) in the case \(1{<\theta^{2}<\theta_{j}^{(1)}},$ ${j=1,\ldots,m},\) in terms of the best approximation and prove its unimprovability on the class \(E_{\bar{p},\bar{\theta}}^{\lambda}=\{f\in L_{\bar{p},\bar{\theta}}^{*}(\mathbb{I}^{m})\colon{E_{n}(f)_{\bar{p},\bar{\theta}}\leq\lambda_{n},}\) \({n=0,1,\ldots\},}\) where \(E_{n}(f)_{\bar{p},\bar{\theta}}\) is the best approximation of the function \(f \in L_{\bar{p},\bar{\theta}}^{*}(\mathbb{I}^{m})\) by trigonometric polynomials of order \(n\) in each variable \(x_{j},\) \(j=1,\ldots,m,\) and \(\lambda=\{\lambda_{n}\}\) is a sequence of positive numbers \(\lambda_{n}\downarrow0\) as \(n\to+\infty\). In the second section, we establish order-exact estimates for the best approximation of functions from the class \(B_{\bar{p}, \bar\theta^{(1)}}^{(0, \alpha, \tau)}\) in the space \(L_{\bar{p}, \theta^{(2)}}^{*}(\mathbb{I}^{m})\).


2021 ◽  
Vol 103 (3) ◽  
pp. 54-67
Author(s):  
A.E. Jetpisbayeva ◽  
◽  
A.A. Jumabayeva ◽  

In this article we consider continuous functions f with period 2π and their approximation by trigonometric polynomials. This article is devoted to the study of estimates of the best angular approximations of generalized Liouville-Weyl derivatives by angular approximation of functions in the three-dimensional case. We consider generalized Liouville-Weyl derivatives instead of the classical mixed Weyl derivative. In choosing the issues to be considered, we followed the general approach that emerged after the work of the second author of this article. Our main goal is to prove analogs of the results of in the three-dimensional case. The concept of general monotonic sequences plays a key role in our study. Several well-known inequalities are indicated for the norms, best approximations of the r-th derivative with respect to the best approximations of the function f. The issues considered in this paper are related to the range of issues studied in the works of Bernstein. Later Stechkin and Konyushkov obtained an inequality for the best approximation f^(r). Also, in the works of Potapov, using the angle approximation, some classes of functions are considered. In subsection 1 we give the necessary notation and useful lemmas. Estimates for the norms and best approximations of the generalized Liouville-Weyl derivative in the three-dimensional case are obtained.


Author(s):  
Alexander N. Shchitov

We find the sharp constant in the Jackson-type inequality between the value of the best approximation of functions by trigonometric polynomials and moduli of continuity of m-th order in the spaces Sp, 1 ≤ p < ∞. In the particular case we obtain one result which in a certain sense generalizes the result obtained by L.V. Taykov for m = 1 in the space L2 for the arbitrary moduli of continuity of m-th order (m Є N).


Sign in / Sign up

Export Citation Format

Share Document