A discrete weighted Markov–Bernstein inequality for sequences and polynomials

2021 ◽  
Vol 493 (1) ◽  
pp. 124522
Author(s):  
Dimitar K. Dimitrov ◽  
Geno P. Nikolov
Keyword(s):  
1998 ◽  
Vol 95 (3) ◽  
pp. 476-496 ◽  
Author(s):  
Roy Jones ◽  
Xin Li ◽  
R.N. Mohapatra ◽  
R.S. Rodriguez

2016 ◽  
Vol 05 (02) ◽  
pp. 1650006 ◽  
Author(s):  
Marwa Banna ◽  
Florence Merlevède ◽  
Pierre Youssef

In this paper, we obtain a Bernstein-type inequality for the sum of self-adjoint centered and geometrically absolutely regular random matrices with bounded largest eigenvalue. This inequality can be viewed as an extension to the matrix setting of the Bernstein-type inequality obtained by Merlevède et al. [Bernstein inequality and moderate deviations under strong mixing conditions, in High Dimensional Probability V: The Luminy Volume, Institute of Mathematical Statistics Collection, Vol. 5 (Institute of Mathematical Statistics, Beachwood, OH, 2009), pp. 273–292.] in the context of real-valued bounded random variables that are geometrically absolutely regular. The proofs rely on decoupling the Laplace transform of a sum on a Cantor-like set of random matrices.


1971 ◽  
Vol 16 (1) ◽  
pp. 182-184
Author(s):  
S. L. Blyumin ◽  
B. D. Kotlyar
Keyword(s):  

Author(s):  
Vyacheslav Futorny ◽  
João Schwarz

We study holonomic modules for the rings of invariant differential operators on affine commutative domains with finite Krull dimension with respect to arbitrary actions of finite groups. We prove the Bernstein inequality for these rings. Our main tool is the filter dimension introduced by Bavula. We extend the results for the invariants of the Weyl algebra with respect to the symplectic action of a finite group, for the rings of invariant differential operators on quotient varieties, and invariants of certain generalized Weyl algebras under the linear actions. We show that the filter dimension of all above mentioned algebras equals [Formula: see text].


2021 ◽  
Vol 56 (2) ◽  
pp. 208-211
Author(s):  
A. V. Savchuk

We give a sufficient condition on coefficients $a_k$ of an algebraic polynomial $P(z)=\sum\limits_{k=0}^{n}a_kz^k$, $a_n\not=0,$ such that the pointwise Bernstein inequality $|P'(z)|\le n|P(z)|$ is true for all $z,\ |z|\le 1$.


Sign in / Sign up

Export Citation Format

Share Document