scholarly journals Point-wise estimates for the derivative of algebraic polynomials

2021 ◽  
Vol 56 (2) ◽  
pp. 208-211
Author(s):  
A. V. Savchuk

We give a sufficient condition on coefficients $a_k$ of an algebraic polynomial $P(z)=\sum\limits_{k=0}^{n}a_kz^k$, $a_n\not=0,$ such that the pointwise Bernstein inequality $|P'(z)|\le n|P(z)|$ is true for all $z,\ |z|\le 1$.

2021 ◽  
Vol 19 (1) ◽  
pp. 1047-1055
Author(s):  
Zhihua Zhang

Abstract Fourier approximation plays a key role in qualitative theory of deterministic and random differential equations. In this paper, we will develop a new approximation tool. For an m m -order differentiable function f f on [ 0 , 1 0,1 ], we will construct an m m -degree algebraic polynomial P m {P}_{m} depending on values of f f and its derivatives at ends of [ 0 , 1 0,1 ] such that the Fourier coefficients of R m = f − P m {R}_{m}=f-{P}_{m} decay fast. Since the partial sum of Fourier series R m {R}_{m} is a trigonometric polynomial, we can reconstruct the function f f well by the combination of a polynomial and a trigonometric polynomial. Moreover, we will extend these results to the case of random processes.


2020 ◽  
Vol 6 (2) ◽  
pp. 87
Author(s):  
Tatiana M. Nikiforova

The paper presents new solutions to two classical problems of approximation theory. The first problem is to find the polynomial that deviates least from zero on an ellipse. The second one is to find the exact upper bound of the uniform norm on an ellipse with foci \(\pm 1\) of the derivative of an algebraic polynomial with real coefficients normalized on the segment \([- 1,1]\).


1981 ◽  
Vol 33 (1) ◽  
pp. 201-209 ◽  
Author(s):  
Peter B. Borwein

In 1889, A. A. Markov proved the following inequality:INEQUALITY 1. (Markov [4]). If pn is any algebraic polynomial of degree at most n thenwhere ‖ ‖A denotes the supremum norm on A.In 1912, S. N. Bernstein establishedINEQUALITY 2. (Bernstein [2]). If pn is any algebraic polynomial of degree at most n thenfor x ∈ (a, b).In this paper we extend these inequalities to sets of the form [a, b] ∪ [c, d]. Let Πn denote the set of algebraic polynomials with real coefficients of degree at most n.THEOREM 1. Let a < b ≦ c < d and let pn ∈ Πn. Thenfor x ∈ (a, b).


2018 ◽  
Vol 25 (3) ◽  
pp. 323-330 ◽  
Author(s):  
Anatoly N. Morozov

The function \(f\in L_p[I], \;p>0,\) is called \((k,p)\)-differentiable at a point \(x_0\in I\) if there exists an algebraic polynomial of \(\pi\) of degree no more than \(k\) for which holds \( \Vert f-\pi \Vert_{L_p[J_h]} = o(h^{k+\frac{1}{p}}), \) where \(\;J_h=[x_0-h; x_0+h]\cap I.\) At an internal point for \(k=1\) and \(p=\infty\) this is equivalent to the usual definition of the function differentiability. At an interior point for \(k=1\) and \(p=\infty\), the definition is equivalent to the usual differentiability of the function. There is a standard "hierarchy" for the existence of differentials(if \(p_1<p_2,\) then \((k,p_2)\)-differentiability should be \((k,p_1)\)-differentiability. In the works of S.N. Bernstein, A.P. Calderon and A. Zygmund were given applications of such a construction to build a description of functional spaces (\(p=\infty\)) and the study of local properties of solutions of differential equations \((1\le p\le\infty)\), respectively. This article is related to the first mentioned work. The article introduces the concept of uniform differentiability. We say that a function \(f\), \((k,p)\)-differentiable at all points of the segment \(I\), is uniformly \((k,p)\)-differentiable on \(I\) if for any number \(\varepsilon>0\) there is a number \(\delta>0\) such that for each point \(x\in I\) runs \( \Vert f-\pi\Vert_{L_p[J_h]}<\varepsilon\cdot h^{k+\frac{1}{p}} \; \) for \(0<h<\delta, \; J_h = [x\!-\!H; x\!+\!h]\cap I,\) where \(\pi\) is the polynomial of the terms of the \((k, p)\)-differentiability at the point \(x\). Based on the methods of local approximations of functions by algebraic polynomials it is shown that a uniform \((k,p)\)-differentiability of the function \(f\) at some \(1\le p\le\infty\) implies  \(f\in C^k[I].\) Therefore, in this case the differentials are "equivalent". Since every function from \(C^k[I]\) is uniformly \((k,p)\)-differentiable on the interval \(I\) at \(1\le p\le\infty,\) we obtain a certain criterion of belonging to this space. The range \(0<p<1,\) obviously, can be included into the necessary condition the membership of the function \(C^k[I]\), but the sufficiency of Taylor differentiability in this range has not yet been fully proven.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
K. Farahmand ◽  
M. Sambandham

The expected number of real zeros of an algebraic polynomial with random coefficient is known. The distribution of the coefficients is often assumed to be identical albeit allowed to have different classes of distributions. For the nonidentical case, there has been much interest where the variance of the th coefficient is . It is shown that this class of polynomials has significantly more zeros than the classical algebraic polynomials with identical coefficients. However, in the case of nonidentically distributed coefficients it is analytically necessary to assume that the means of coefficients are zero. In this work we study a case when the moments of the coefficients have both binomial and geometric progression elements. That is we assume and . We show how the above expected number of real zeros is dependent on values of and in various cases.


2006 ◽  
Vol 2006 ◽  
pp. 1-6 ◽  
Author(s):  
A. Nezakati ◽  
K. Farahmand

This paper provides an asymptotic estimate for the expected number of real zeros of a random algebraic polynomial a0+a1x+a2x2+…+an−1xn−1. The coefficients aj(j=0,1,2,…,n−1) are assumed to be independent normal random variables with mean zero. For integers m and k=O(log⁡n)2 the variances of the coefficients are assumed to have nonidentical value var⁡(aj)=(k−1j−ik), where n=k⋅m and i=0,1,2,…,m−1. Previous results are mainly for identically distributed coefficients or when var⁡(aj)=(nj). We show that the latter is a special case of our general theorem.


2003 ◽  
Vol 16 (3) ◽  
pp. 249-255 ◽  
Author(s):  
K. Farahmand ◽  
M. Sambandham

There are many known asymptotic estimates for the expected number of real zeros of an algebraic polynomial a0+a1x+a2x2+⋯+an−1xn−1 with identically distributed random coefficients. Under different assumptions for the distribution of the coefficients {aj}j=0n−1 it is shown that the above expected number is asymptotic to O(logn). This order for the expected number of zeros remains valid for the case when the coefficients are grouped into two, each group with a different variance. However, it was recently shown that if the coefficients are non-identically distributed such that the variance of the jth term is (nj) the expected number of zeros of the polynomial increases to O(n). The present paper provides the value for this asymptotic formula for the polynomials with the latter variances when they are grouped into three with different patterns for their variances.


Author(s):  
John H. Luft

With information processing devices such as radio telescopes, microscopes or hi-fi systems, the quality of the output often is limited by distortion or noise introduced at the input stage of the device. This analogy can be extended usefully to specimen preparation for the electron microscope; fixation, which initiates the processing sequence, is the single most important step and, unfortunately, is the least well understood. Although there is an abundance of fixation mixtures recommended in the light microscopy literature, osmium tetroxide and glutaraldehyde are favored for electron microscopy. These fixatives react vigorously with proteins at the molecular level. There is clear evidence for the cross-linking of proteins both by osmium tetroxide and glutaraldehyde and cross-linking may be a necessary if not sufficient condition to define fixatives as a class.


Sign in / Sign up

Export Citation Format

Share Document