scholarly journals A converse to the Schwarz lemma for planar harmonic maps

Author(s):  
Ole Fredrik Brevig ◽  
Joaquim Ortega-Cerdà ◽  
Kristian Seip

2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Anatoly Golberg ◽  
Ruslan Salimov


Author(s):  
Aldo Andreotti ◽  
Wilhelm Stoll


2019 ◽  
Vol 38 (7) ◽  
pp. 219-226
Author(s):  
Tugba Akyel ◽  
Bulent Nafi Ornek

In this paper, a boundary version of the Schwarz lemma for the class $\mathcal{% N(\alpha )}$ is investigated. For the function $f(z)=\frac{1}{z}% +a_{0}+a_{1}z+a_{2}z^{2}+...$ defined in the punctured disc $E$ such that $% f(z)\in \mathcal{N(\alpha )}$, we estimate a modulus of the angular derivative of the function $\frac{zf^{\prime }(z)}{f(z)}$ at the boundary point $c$ with $\frac{cf^{\prime }(c)}{f(c)}=\frac{1-2\beta }{\beta }$. Moreover, Schwarz lemma for class $\mathcal{N(\alpha )}$ is given.





2022 ◽  
Vol 214 ◽  
pp. 112556
Author(s):  
Qun Chen ◽  
Kaipeng Li ◽  
Hongbing Qiu


2014 ◽  
Vol 142 (4) ◽  
pp. 1237-1248 ◽  
Author(s):  
Zhongxiang Zhang




Sign in / Sign up

Export Citation Format

Share Document