hilbert spaces
Recently Published Documents





2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-27
Chris Heunen ◽  
Robin Kaarsgaard

We study the two dual quantum information effects to manipulate the amount of information in quantum computation: hiding and allocation. The resulting type-and-effect system is fully expressive for irreversible quantum computing, including measurement. We provide universal categorical constructions that semantically interpret this arrow metalanguage with choice, starting with any rig groupoid interpreting the reversible base language. Several properties of quantum measurement follow in general, and we translate (noniterative) quantum flow charts into our language. The semantic constructions turn the category of unitaries between Hilbert spaces into the category of completely positive trace-preserving maps, and they turn the category of bijections between finite sets into the category of functions with chosen garbage. Thus they capture the fundamental theorems of classical and quantum reversible computing of Toffoli and Stinespring.

2022 ◽  
Vol 186 (2) ◽  
Benjamin Doyon

AbstractHydrodynamic projections, the projection onto conserved charges representing ballistic propagation of fluid waves, give exact transport results in many-body systems, such as the exact Drude weights. Focussing one one-dimensional systems, I show that this principle can be extended beyond the Euler scale, in particular to the diffusive and superdiffusive scales. By hydrodynamic reduction, Hilbert spaces of observables are constructed that generalise the standard space of conserved densities and describe the finer scales of hydrodynamics. The Green–Kubo formula for the Onsager matrix has a natural expression within the diffusive space. This space is associated with quadratically extensive charges, and projections onto any such charge give generic lower bounds for diffusion. In particular, bilinear expressions in linearly extensive charges lead to explicit diffusion lower bounds calculable from the thermodynamics, and applicable for instance to generic momentum-conserving one-dimensional systems. Bilinear charges are interpreted as covariant derivatives on the manifold of maximal entropy states, and represent the contribution to diffusion from scattering of ballistic waves. An analysis of fractionally extensive charges, combined with clustering properties from the superdiffusion phenomenology, gives lower bounds for superdiffusion exponents. These bounds reproduce the predictions of nonlinear fluctuating hydrodynamics, including the Kardar–Parisi–Zhang exponent 2/3 for sound-like modes, the Levy-distribution exponent 3/5 for heat-like modes, and the full Fibonacci sequence.

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 219
Mikhail Kamenskii ◽  
Garik Petrosyan ◽  
Paul Raynaud de Fitte ◽  
Jen-Chih Yao

In this paper we study the existence of a mild solution of a periodic boundary value problem for fractional quasilinear differential equations in a Hilbert spaces. We assume that a linear part in equations is a self-adjoint positive operator with dense domain in Hilbert space and a nonlinear part is a map obeying Carathéodory type conditions. We find the mild solution of this problem in the form of a series in a Hilbert space. In the space of continuous functions, we construct the corresponding resolving operator, and for it, by using Schauder theorem, we prove the existence of a fixed point. At the end of the paper, we give an example for a boundary value problem for a diffusion type equation.

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 123
Vasile Berinde

For approximating the fixed points of enriched nonexpansive mappings in Hilbert spaces, we consider a modified Krasnosel’skiǐ–Mann algorithm for which we prove a strong convergence theorem. We also empirically compare the rate of convergence of the modified Krasnosel’skiǐ–Mann algorithm and of the simple Krasnosel’skiǐ fixed point algorithm. Based on the numerical experiments reported in the paper we conclude that, for the class of enriched nonexpansive mappings, it is more convenient to work with the simple Krasnosel’skiǐ fixed point algorithm than with the modified Krasnosel’skiǐ–Mann algorithm.

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Tzu-Chien Yin ◽  
Nawab Hussain

In this paper, we continue to investigate the convergence analysis of Tseng-type forward-backward-forward algorithms for solving quasimonotone variational inequalities in Hilbert spaces. We use a self-adaptive technique to update the step sizes without prior knowledge of the Lipschitz constant of quasimonotone operators. Furthermore, we weaken the sequential weak continuity of quasimonotone operators to a weaker condition. Under some mild assumptions, we prove that Tseng-type forward-backward-forward algorithm converges weakly to a solution of quasimonotone variational inequalities.

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 58
Houri Ziaeepour

In a previous article we proposed a new model for quantum gravity (QGR) and cosmology, dubbed SU(∞)-QGR. One of the axioms of this model is that Hilbert spaces of the Universe and its subsystems represent the SU(∞) symmetry group. In this framework, the classical spacetime is interpreted as being the parameter space characterizing states of the SU(∞) representing Hilbert spaces. Using quantum uncertainty relations, it is shown that the parameter space—the spacetime—has a 3+1 dimensional Lorentzian geometry. Here, after a review of SU(∞)-QGR, including a demonstration that its classical limit is Einstein gravity, we compare it with several QGR proposals, including: string and M-theories, loop quantum gravity and related models, and QGR proposals inspired by the holographic principle and quantum entanglement. The purpose is to find their common and analogous features, even if they apparently seem to have different roles and interpretations. The hope is that this exercise provides a better understanding of gravity as a universal quantum force and clarifies the physical nature of the spacetime. We identify several common features among the studied models: the importance of 2D structures; the algebraic decomposition to tensor products; the special role of the SU(2) group in their formulation; the necessity of a quantum time as a relational observable. We discuss how these features can be considered as analogous in different models. We also show that they arise in SU(∞)-QGR without fine-tuning, additional assumptions, or restrictions.

Sign in / Sign up

Export Citation Format

Share Document