scholarly journals Normalized solutions to Schrödinger systems with linear and nonlinear couplings

Author(s):  
Zhaoyang Yun ◽  
Zhitao Zhang
Nonlinearity ◽  
2019 ◽  
Vol 32 (3) ◽  
pp. 1044-1072 ◽  
Author(s):  
Benedetta Noris ◽  
Hugo Tavares ◽  
Gianmaria Verzini

1991 ◽  
Vol 6 (6) ◽  
pp. 729-746 ◽  
Author(s):  
Teresa Hagelberg ◽  
Nick Pisias ◽  
Steve Elgar

2009 ◽  
Vol 31 (3) ◽  
pp. 487-497 ◽  
Author(s):  
Joan F. Alonso ◽  
Miguel A. Mañanas ◽  
Sergio Romero ◽  
Dirk Hoyer ◽  
Jordi Riba ◽  
...  

2019 ◽  
Vol 19 (3) ◽  
pp. 595-623
Author(s):  
Yuanze Wu

Abstract Consider the system \left\{\begin{aligned} \displaystyle-\Delta u_{i}+\mu_{i}u_{i}&\displaystyle=% \nu_{i}u_{i}^{2^{*}-1}+\beta\mathop{\sum_{j=1,j\neq i}^{k}}u_{j}^{\frac{2^{*}}% {2}}u_{i}^{\frac{2^{*}}{2}-1}+\lambda\mathop{\sum_{j=1,j\neq i}^{k}}u_{j}&&% \displaystyle\phantom{}\text{in}\ \Omega,\\ \displaystyle u_{i}&\displaystyle>0&&\displaystyle\phantom{}\text{in}\ \Omega,% \\ \displaystyle u_{i}&\displaystyle=0&&\displaystyle\phantom{}\text{on}\ % \partial\Omega,\quad i=1,2,\ldots,k,\end{aligned}\right. where {k\geq 2} , {\Omega\subset\mathbb{R}^{N}} ( {N\geq 3} ) is a bounded domain, {2^{*}=\frac{2N}{N-2}} , {\mu_{i}\in\mathbb{R}} and {\nu_{i}>0} are constants, and {\beta,\lambda>0} are parameters. By showing a unique result of the limit system, we prove existence and nonexistence results of ground states to this system by variational methods, which generalize the results in [7, 18]. Concentration behaviors of ground states for {\beta,\lambda} are also established.


Sign in / Sign up

Export Citation Format

Share Document