bound state
Recently Published Documents


TOTAL DOCUMENTS

3737
(FIVE YEARS 751)

H-INDEX

91
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Bing Zhang ◽  
Zihe Rao ◽  
Haitao Yang ◽  
Shan Sun ◽  
Yan Gao ◽  
...  

The ATP-binding cassette (ABC) transporter, IrtAB, plays a vital role in the replication and viability of Mycobacterium tuberculosis (Mtb), where its function is to import iron-loaded siderophores. Unusually, it adopts the typical fold of canonical ABC exporters. Here, we report the structure of unliganded Mtb IrtAB and its structure in complex with ATP, ADP, and an ATP analogue (AMP-PNP) at resolutions from 2.9 to 3.5 Å. In the ATP-bound state, the two nucleotide-binding domains (NBDs) form a "head-to-tail" dimer, but IrtAB has an unexpectedly occluded conformation, with the inner core forming a large hydrophilic cavity of about 4600 Å3. Comparison of the structure of the transporter in inward-facing and occluded conformations reveals that the NBD and the intracellular helical region of transmembrane domain (TMD) have an asymmetric allosteric mechanism when ATP binding/hydrolysis such that the one exhibits rigid-body rotation and the other moves in a concerted response as a rigid body. This study provides a molecular basis for the ATP-driven conformational changes that occur in IrtAB and an explanation as to how iron-loaded siderophores are imported into Mtb by IrtAB.


Author(s):  
Dragomir B. Krastev ◽  
Shudong Li ◽  
Yilun Sun ◽  
Andrew J. Wicks ◽  
Gwendoline Hoslett ◽  
...  

AbstractPoly (ADP-ribose) polymerase (PARP) inhibitors elicit antitumour activity in homologous recombination-defective cancers by trapping PARP1 in a chromatin-bound state. How cells process trapped PARP1 remains unclear. Using wild-type and a trapping-deficient PARP1 mutant combined with rapid immunoprecipitation mass spectrometry of endogenous proteins and Apex2 proximity labelling, we delineated mass spectrometry-based interactomes of trapped and non-trapped PARP1. These analyses identified an interaction between trapped PARP1 and the ubiquitin-regulated p97 ATPase/segregase. We found that following trapping, PARP1 is SUMOylated by PIAS4 and subsequently ubiquitylated by the SUMO-targeted E3 ubiquitin ligase RNF4, events that promote recruitment of p97 and removal of trapped PARP1 from chromatin. Small-molecule p97-complex inhibitors, including a metabolite of the clinically used drug disulfiram (CuET), prolonged PARP1 trapping and enhanced PARP inhibitor-induced cytotoxicity in homologous recombination-defective tumour cells and patient-derived tumour organoids. Together, these results suggest that p97 ATPase plays a key role in the processing of trapped PARP1 and the response of tumour cells to PARP inhibitors.


Author(s):  
Victor Hugo Pérez Carrillo ◽  
Dania Rose-Sperling ◽  
Mai Anh Tran ◽  
Christoph Wiedemann ◽  
Ute A. Hellmich

AbstractATP binding cassette (ABC) proteins are present in all phyla of life and form one of the largest protein families. The Bacillus subtilis ABC transporter BmrA is a functional homodimer that can extrude many different harmful compounds out of the cell. Each BmrA monomer is composed of a transmembrane domain (TMD) and a nucleotide binding domain (NBD). While the TMDs of ABC transporters are sequentially diverse, the highly conserved NBDs harbor distinctive conserved motifs that enable nucleotide binding and hydrolysis, interdomain communication and that mark a protein as a member of the ABC superfamily. In the catalytic cycle of an ABC transporter, the NBDs function as the molecular motor that fuels substrate translocation across the membrane via the TMDs and are thus pivotal for the entire transport process. For a better understanding of the structural and dynamic consequences of nucleotide interactions within the NBD at atomic resolution, we determined the 1H, 13C and 15N backbone chemical shift assignments of the 259 amino acid wildtype BmrA-NBD in its post-hydrolytic, ADP-bound state.


2022 ◽  
Author(s):  
Chelsea L Blankenchip ◽  
Justin V Nguyen ◽  
Rebecca K Lau ◽  
Qiaozhen Ye ◽  
Yajie Gu ◽  
...  

Bacteria use diverse immune systems to defend themselves from ubiquitous viruses termed bacteriophages (phages). Many anti-phage systems function by abortive infection to kill a phage-infected cell, raising the question of how these systems are regulated to avoid activation and cell killing outside the context of infection. Here, we identify a transcription factor associated with the widespread CBASS bacterial immune system, that we term CapW. CapW forms a homodimer and binds a palindromic DNA sequence in the CBASS promoter region. Two crystal structures of CapW reveal how the protein switches from a DNA binding-competent state to a ligand-bound state that cannot bind DNA due to misalignment of dimer-related DNA binding domains. We show that CapW strongly represses CBASS gene expression in uninfected cells, and that CapW disruption likely results in toxicity due to uncontrolled CBASS expression. Our results parallel recent findings with BrxR, a transcription factor associated with the BREX anti-phage system, and suggest that CapW and BrxR are the founding members of a family of universal anti-phage signaling proteins.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Noah M Dietzen ◽  
Mark J Arcario ◽  
Lawrence J Chen ◽  
John T Petroff ◽  
Trent K Moreland ◽  
...  

Polyunsaturated fatty acids (PUFAs) inhibit pentameric ligand-gated ion channels (pLGICs) but the mechanism of inhibition is not well understood. The PUFA, docosahexaenoic acid (DHA), inhibits agonist responses of the pLGIC, ELIC, more effectively than palmitic acid, similar to the effects observed in the GABAA receptor and nicotinic acetylcholine receptor. Using photo-affinity labeling and coarse-grained molecular dynamics simulations, we identified two fatty acid binding sites in the outer transmembrane domain (TMD) of ELIC. Fatty acid binding to the photolabeled sites is selective for DHA over palmitic acid, and specific for an agonist-bound state. Hexadecyl-methanethiosulfonate modification of one of the two fatty acid binding sites in the outer TMD recapitulates the inhibitory effect of PUFAs in ELIC. The results demonstrate that DHA selectively binds to multiple sites in the outer TMD of ELIC, but that state-dependent binding to a single intrasubunit site mediates DHA inhibition of ELIC.


2022 ◽  
Author(s):  
Arup Mondal ◽  
G.V.T. Swapna ◽  
Jingzhou Hao ◽  
LiChung Ma ◽  
Monica J. Roth ◽  
...  

Intrinsically disordered regions of proteins often mediate important protein-protein interactions. However, the folding upon binding nature of many polypeptide-protein interactions limits the ability of modeling tools to predict structures of such complexes. To address this problem, we have taken a tandem approach combining NMR chemical shift data and molecular simulations to determine structures of peptide-protein complexes. Here, we demonstrate this approach for polypeptide com-plexes formed with the extraterminal (ET) domain of bromo and extraterminal domain (BET) proteins, which exhibit a high degree of binding plasticity. This system is particularly challenging as the binding process includes allosteric changes across the ET receptor upon binding, and the polypeptide binding partners can form different conformations (e.g., helices and hair-pins) in the complex. In a blind study, the new approach successfully modeled bound-state conformations and binding pos-es, using only backbone chemical shift data, in excellent agreement with experimentally-determined structures. The approach also predicts relative binding affinities of different peptides. This hybrid MELD-NMR approach provides a powerful new tool for structural analysis of protein-polypeptide complexes in the low NMR information content regime, which can be used successfully for flexible systems where one polypeptide binding partner folds upon complex formation.


Author(s):  
R.C. Silva ◽  
R.L. Silva ◽  
V.L. Carvalho-Santos ◽  
W.A. Moura-Melo ◽  
A.R. Pereira
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document