On Bloch seminorm of finite Blaschke products in the unit disk

Author(s):  
Anton D. Baranov ◽  
Ilgiz R. Kayumov ◽  
Semen R. Nasyrov
2009 ◽  
Vol 359 (2) ◽  
pp. 547-555 ◽  
Author(s):  
Manuela Basallote ◽  
Manuel D. Contreras ◽  
Carmen Hernández-Mancera

Author(s):  
Stephan Ramon Garcia ◽  
Javad Mashreghi ◽  
William T. Ross

1998 ◽  
pp. 301-306
Author(s):  
Hoi Sub Kim ◽  
Hong Oh Kim ◽  
Sung Yong Shin

1982 ◽  
Vol 5 (2) ◽  
pp. 351-356
Author(s):  
Douglas W. Townsed

It is well known thatT(r,f)is differentiable at least forr>r0. We show that, in fact,T(r,f)is differentiable for all but at most one value ofr, and ifT(r,f)fails to have a derivative for some value ofr, thenfis a constant times a quotient of finite Blaschke products.


1999 ◽  
Vol 19 (3) ◽  
pp. 549-552 ◽  
Author(s):  
CARLOS ARTEAGA

We consider the set of finite Blaschke products $F$ for which the fixed points on the circle $S^1$ are expanding and we prove that if $F'(x) \ne F'(y)$ for all different fixed points $x,y$ of $F$ on $S^1$, then $F$ commutes only with its own powers.


Sign in / Sign up

Export Citation Format

Share Document