invariant spaces
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 22)

H-INDEX

27
(FIVE YEARS 0)

2021 ◽  
pp. 1-21
Author(s):  
René Erlin Castillo ◽  
A. Ricardo Miranda B. ◽  
Julio C. Ramos-Fernández




Author(s):  
Jeffrey A. Hogan ◽  
Joseph D. Lakey
Keyword(s):  


2021 ◽  
Vol 13 (1) ◽  
pp. 23-44
Author(s):  
Owais Ahmad ◽  
Mobin Ahmad ◽  
Neyaz Ahmad

Abstract In this paper, we introduce the notion of Walsh shift-invariant space and present a unified approach to the study of shift-invariant systems to be frames in L2(ℝ+). We obtain a necessary condition and three sufficient conditions under which the Walsh shift-invariant systems constitute frames for L2(ℝ+). Furthermore, we discuss applications of our main results to obtain some known conclusions about the Gabor frames and wavelet frames on positive half line.



2021 ◽  
Vol 118 ◽  
pp. 107131
Author(s):  
Rui Li ◽  
Bei Liu ◽  
Qingyue Zhang


Author(s):  
Daniel Campbell ◽  
Luigi Greco ◽  
Roberta Schiattarella ◽  
Filip Soudsky

Let $\Omega\subseteq\mathcal{R}^2$ be a domain, let $X$ be a rearrangement invariant space and let $f\in W^{1}X(\Omega,\mathcal{R}^2)$ be a homeomorphism between $\Omega$ and $f(\Omega)$. Then there exists a sequence of diffeomorphisms $f_k$ converging to $f$ in the space $W^{1}X(\Omega,\mathcal{R}^2)$.



2021 ◽  
Author(s):  
Shengzhong Chen

The problem of optimal capital and risk allocation among economic agents, has played a predominant role in the respective academic and industrial research areas for decades. Typically as risk occurs in face of randomness the risks which are to be measured are identified with real-valued random variables on some probability space (Ω, F, P). Consider a model space X , and n economic agents with initial endowments X1, · · · , Xn ∈ X who assess the riskiness of their positions by means of law-invariant convex risk measures ρi : X → (−∞,∞]. In order to minimize total and individual risk, the agents redistribute the aggregate endowment X = X1 + · · · + Xn among themselves. An optimal capital and risk allocation Y1, · · · , Yn satisfies Y1 + · · · + Yn = X and ρ1(Y1) + · · · + ρ(Yn) = inf nXn i=1 ρi(Xi) : Xi ∈ X , i = 1, . . . , n, and Xn i=1 Xi = X o , (0.1) where n i=1ρi(X) = inf nPn i=1 ρi(Xi) : Xi ∈ X , i = 1, . . . , n, and Pn i=1 Xi = X o is the inf-convolution of ρ1, ..., ρn. In 2008, Filipovi´c and Svindland proved that if X is an L p (P) for some 1 ≤ p ≤ ∞ and ρi satisfy a suitable continuity condition (i.e. Fatou property), then Problem (0.1) always admits a solution. To reflect the fact of randomness of risk, we should consider the model space X chosen for risk evaluations to be as general as possible. The main contribution of this thesis is Theorem 4.10 has been published in [9]. It extends Filipovi´c and Svindland’s result from L p spaces to general rearrangement invariant (r.i.) spaces.



2021 ◽  
Author(s):  
Shengzhong Chen

The problem of optimal capital and risk allocation among economic agents, has played a predominant role in the respective academic and industrial research areas for decades. Typically as risk occurs in face of randomness the risks which are to be measured are identified with real-valued random variables on some probability space (Ω, F, P). Consider a model space X , and n economic agents with initial endowments X1, · · · , Xn ∈ X who assess the riskiness of their positions by means of law-invariant convex risk measures ρi : X → (−∞,∞]. In order to minimize total and individual risk, the agents redistribute the aggregate endowment X = X1 + · · · + Xn among themselves. An optimal capital and risk allocation Y1, · · · , Yn satisfies Y1 + · · · + Yn = X and ρ1(Y1) + · · · + ρ(Yn) = inf nXn i=1 ρi(Xi) : Xi ∈ X , i = 1, . . . , n, and Xn i=1 Xi = X o , (0.1) where n i=1ρi(X) = inf nPn i=1 ρi(Xi) : Xi ∈ X , i = 1, . . . , n, and Pn i=1 Xi = X o is the inf-convolution of ρ1, ..., ρn. In 2008, Filipovi´c and Svindland proved that if X is an L p (P) for some 1 ≤ p ≤ ∞ and ρi satisfy a suitable continuity condition (i.e. Fatou property), then Problem (0.1) always admits a solution. To reflect the fact of randomness of risk, we should consider the model space X chosen for risk evaluations to be as general as possible. The main contribution of this thesis is Theorem 4.10 has been published in [9]. It extends Filipovi´c and Svindland’s result from L p spaces to general rearrangement invariant (r.i.) spaces.



Sign in / Sign up

Export Citation Format

Share Document