Structure of A2-fibrations having fixed point free locally nilpotent derivations

2021 ◽  
Vol 225 (12) ◽  
pp. 106763
Author(s):  
Janaki Raman Babu ◽  
Prosenjit Das
2012 ◽  
Vol 372 ◽  
pp. 480-487 ◽  
Author(s):  
Mʼhammed El Kahoui ◽  
Mustapha Ouali

Author(s):  
E. I. Khukhro ◽  
P. Shumyatsky

AbstractA right Engel sink of an element g of a group G is a set $${{\mathscr {R}}}(g)$$ R ( g ) such that for every $$x\in G$$ x ∈ G all sufficiently long commutators $$[...[[g,x],x],\dots ,x]$$ [ . . . [ [ g , x ] , x ] , ⋯ , x ] belong to $${\mathscr {R}}(g)$$ R ( g ) . (Thus, g is a right Engel element precisely when we can choose $${{\mathscr {R}}}(g)=\{ 1\}$$ R ( g ) = { 1 } .) We prove that if a profinite group G admits a coprime automorphism $$\varphi $$ φ of prime order such that every fixed point of $$\varphi $$ φ has a finite right Engel sink, then G has an open locally nilpotent subgroup. A left Engel sink of an element g of a group G is a set $${{\mathscr {E}}}(g)$$ E ( g ) such that for every $$x\in G$$ x ∈ G all sufficiently long commutators $$[...[[x,g],g],\dots ,g]$$ [ . . . [ [ x , g ] , g ] , ⋯ , g ] belong to $${{\mathscr {E}}}(g)$$ E ( g ) . (Thus, g is a left Engel element precisely when we can choose $${\mathscr {E}}(g)=\{ 1\}$$ E ( g ) = { 1 } .) We prove that if a profinite group G admits a coprime automorphism $$\varphi $$ φ of prime order such that every fixed point of $$\varphi $$ φ has a finite left Engel sink, then G has an open pronilpotent-by-nilpotent subgroup.


2003 ◽  
Author(s):  
Robin R. Vallacher ◽  
Andrzej Nowak ◽  
Matthew Rockloff
Keyword(s):  

2000 ◽  
Vol 39 (02) ◽  
pp. 118-121 ◽  
Author(s):  
S. Akselrod ◽  
S. Eyal

Abstract:A simple nonlinear beat-to-beat model of the human cardiovascular system has been studied. The model, introduced by DeBoer et al. was a simplified linearized version. We present a modified model which allows to investigate the nonlinear dynamics of the cardiovascular system. We found that an increase in the -sympathetic gain, via a Hopf bifurcation, leads to sustained oscillations both in heart rate and blood pressure variables at about 0.1 Hz (Mayer waves). Similar oscillations were observed when increasing the -sympathetic gain or decreasing the vagal gain. Further changes of the gains, even beyond reasonable physiological values, did not reveal another bifurcation. The dynamics observed were thus either fixed point or limit cycle. Introducing respiration into the model showed entrainment between the respiration frequency and the Mayer waves.


2016 ◽  
Vol 2017 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Muhammad Usman Ali ◽  
◽  
Tayyab Kamran ◽  
Mihai Postolache ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document