Identification of synaptic pattern of kainate glutamate receptor subtypes on direction-selective retinal ganglion cells

2007 ◽  
Vol 58 (3) ◽  
pp. 255-264 ◽  
Author(s):  
Oh-Ju Kwon ◽  
Moon-Sook Kim ◽  
Tae-Jin Kim ◽  
Chang-Jin Jeon
1998 ◽  
Vol 80 (6) ◽  
pp. 2975-2990 ◽  
Author(s):  
Ethan D. Cohen

Cohen, Ethan D. Interactions of inhibition and excitation in the light-evoked currents of X type retinal ganglion cells. J. Neurophysiol. 80: 2975–2990, 1998. The excitatory and inhibitory conductances driving the light-evoked currents (LECs) of cat and ferret on- and off-center X ganglion cells were examined in sliced and isolated retina preparations using center spot stimulation in tetrodotoxin (TTX)-containing Ringer. on-center X ganglion cells showed an increase in an excitatory conductance reversed positive to +20 mV during the spot stimulus. At spot offset, a transient inhibitory conductance was activated on many cells that reversed near E Cl. off-center X ganglion cells showed increases in a sustained inhibitory conductance that reversed near E Cl during spot stimulation. At spot offset, an excitatory conductance was activated that reversed positive to +20 mV. The light-evoked current kinetics of on- and off-center X cells to spot stimulation did not significantly differ in form from their Y cell counterparts in TTX Ringer. When inhibition was blocked, current-voltage relations of the light-evoked excitatory postsynaptic currents (EPSCs) of both on- and off-X cells were L-shaped and reversed near 0 mV. The EPSCs averaged between 300 and 500 pA at −80 mV. The metabotropic glutamate receptor agonist 2-amino-4-phosphonobutyric acid (APB), was used to block on-center bipolar cell function. The LECs of on-X ganglion cells were totally blocked in APB at all holding potentials. APB caused prominent reductions in the dark holding current and synaptic noise of on-X cells. In contrast, the LECs of off-X ganglion cells remained in APB. An increase in the dark holding current was observed. The excitatory amino acid receptor antagonist combination of d-amino-5-phosphono-pentanoic acid (d-AP5) and 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo-(F)-quinoxalinedione (NBQX) was used to block ionotropic glutamate receptor retinal neurotransmission. The LECs of all on-X ganglion cells were totally blocked, and their holding currents were reduced similar to the actions of APB. For off-X ganglion cells, the antagonist combination always blocked the excitatory current at light-off; however, in many cells, the inhibitory current at light-on remained. on-center X ganglion cells receive active excitation during center illumination, and a transient inhibition at light-off. In contrast off-center X ganglion cells experience a sustained active inhibition during center illumination, and a shorter increase in excitation at light-offset. Cone bipolar cells provide a resting level of glutamate release on X ganglion cells on which their light-evoked currents are superimposed.


2006 ◽  
Vol 56 (4) ◽  
pp. 427-434 ◽  
Author(s):  
Seong-Ah Jeong ◽  
Oh-Ju Kwon ◽  
Jea-Young Lee ◽  
Tae-Jin Kim ◽  
Chang-Jin Jeon

1999 ◽  
Vol 79 ◽  
pp. 139
Author(s):  
Keisuke Shoge ◽  
Hiromu K. Mishima ◽  
Satoshi Mukai ◽  
Makoto Shinya ◽  
Kumatoshi Ishihara ◽  
...  

2004 ◽  
Vol 21 (6) ◽  
pp. 935-943 ◽  
Author(s):  
MATTHEW J. GASTINGER ◽  
RAFAIL G. YUSUPOV ◽  
RANDOLPH D. GLICKMAN ◽  
DAVID W. MARSHAK

Mammalian retinas receive input from the posterior hypothalamus, and the neurotransmitter in this pathway is histamine. To determine whether histamine influences ganglion cells, we analyzed the effects of histamine on their maintained and light-evoked activity in vitro. In monkeys, histamine increased the maintained firing rate in 42% of ganglion cells, decreased it in 38%, and had no effect in 20%. When histamine and the HR3 agonist, methylhistamine, were applied to the same cells in succession, their effects were sometimes different, a finding suggesting that at least one other histamine receptor is present. In addition, the responses of some ganglion cells to full-field light stimuli were decreased by histamine and methylhistamine. In rats, the effects of histamine were somewhat different. Histamine increased the maintained firing rate of 82% of ganglion cells. Methylhistamine and the HR2 agonist, dimaprit, had the same effects as histamine. In some cells, histamine increased the light responses, but in others it decreased them. Histamine had no effect on ganglion cells in either species when synaptic transmission was blocked by low Ca2+/high Mg2+ Ames medium. Thus, the major effects of histamine were on the maintained activity of retinal ganglion cells. In both rats and monkeys, 80% or more of the ganglion cells were affected by histamine, and these responses were mediated by at least two of the histamine receptor subtypes.


Sign in / Sign up

Export Citation Format

Share Document