Real-time hand tracking using a mean shift embedded particle filter

2007 ◽  
Vol 40 (7) ◽  
pp. 1958-1970 ◽  
Author(s):  
Caifeng Shan ◽  
Tieniu Tan ◽  
Yucheng Wei
2013 ◽  
Vol 457-458 ◽  
pp. 1050-1053
Author(s):  
Yan Hai Wu ◽  
Xia Min Xie ◽  
Zi Shuo Han

Since Mean-Shift tracking algorithm always falls into local extreme value when the target was sheltered and the particle filter tracking algorithm has huge calculation and degeneracy phenomenon, a new target tracking algorithm based on Mean-Shift and Particle Filter combination is proposed in this paper. First, this paper introduces the basic theory of Mean-Shift and Particle Filter tracking algorithm, and then presents the new target tracking which the Mean-Shift iteration embeds Particle Filter algorithm. Experiment results show that the algorithm needs less computation, while the real-time tracking has been guaranteed, robustness has been improved and the tracking results has been greatly increased.


Author(s):  
Giuseppe Placidi ◽  
Danilo Avola ◽  
Luigi Cinque ◽  
Matteo Polsinelli ◽  
Eleni Theodoridou ◽  
...  

AbstractVirtual Glove (VG) is a low-cost computer vision system that utilizes two orthogonal LEAP motion sensors to provide detailed 4D hand tracking in real–time. VG can find many applications in the field of human-system interaction, such as remote control of machines or tele-rehabilitation. An innovative and efficient data-integration strategy, based on the velocity calculation, for selecting data from one of the LEAPs at each time, is proposed for VG. The position of each joint of the hand model, when obscured to a LEAP, is guessed and tends to flicker. Since VG uses two LEAP sensors, two spatial representations are available each moment for each joint: the method consists of the selection of the one with the lower velocity at each time instant. Choosing the smoother trajectory leads to VG stabilization and precision optimization, reduces occlusions (parts of the hand or handling objects obscuring other hand parts) and/or, when both sensors are seeing the same joint, reduces the number of outliers produced by hardware instabilities. The strategy is experimentally evaluated, in terms of reduction of outliers with respect to a previously used data selection strategy on VG, and results are reported and discussed. In the future, an objective test set has to be imagined, designed, and realized, also with the help of an external precise positioning equipment, to allow also quantitative and objective evaluation of the gain in precision and, maybe, of the intrinsic limitations of the proposed strategy. Moreover, advanced Artificial Intelligence-based (AI-based) real-time data integration strategies, specific for VG, will be designed and tested on the resulting dataset.


Sign in / Sign up

Export Citation Format

Share Document