tracking method
Recently Published Documents


TOTAL DOCUMENTS

2668
(FIVE YEARS 697)

H-INDEX

52
(FIVE YEARS 9)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 541
Author(s):  
Jian Fang ◽  
Lei Wang ◽  
Zhenquan Qin ◽  
Bingxian Lu ◽  
Wenbo Zhao ◽  
...  

Target tracking is a critical technique for localization in an indoor environment. Current target-tracking methods suffer from high overhead, high latency, and blind spots issues due to a large amount of data needing to be collected or trained. On the other hand, a lightweight tracking method is preferred in many cases instead of just pursuing accuracy. For this reason, in this paper, we propose a Wi-Fi-enabled Infrared-like Device-free (WIDE) method for target tracking to realize a lightweight target-tracking method. We first analyze the impact of target movement on the physical layer of the wireless link and establish a near real-time model between the Channel State Information (CSI) and human motion. Secondly, we make full use of the network structure formed by a large number of wireless devices already deployed in reality to achieve the goal. We validate the WIDE method in different environments. Extensive evaluation results show that the WIDE method is lightweight and can track targets rapidly as well as achieve satisfactory tracking results.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 480
Author(s):  
Dawid Cekus ◽  
Filip Depta ◽  
Mariusz Kubanek ◽  
Łukasz Kuczyński ◽  
Paweł Kwiatoń

Tracking the trajectory of the load carried by the rotary crane is an important problem that allows reducing the possibility of its damage by hitting an obstacle in its working area. On the basis of the trajectory, it is also possible to determine an appropriate control system that would allow for the safe transport of the load. This work concerns research on the load motion carried by a rotary crane. For this purpose, the laboratory crane model was designed in Solidworks software, and numerical simulations were made using the Motion module. The developed laboratory model is a scaled equivalent of the real Liebherr LTM 1020 object. The crane control included two movements: changing the inclination angle of the crane’s boom and rotation of the jib with the platform. On the basis of the developed model, a test stand was built, which allowed for the verification of numerical results. Event visualization and trajectory tracking were made using a dynamic vision sensor (DVS) and the Tracker program. Based on the obtained experimental results, the developed numerical model was verified. The proposed trajectory tracking method can be used to develop a control system to prevent collisions during the crane’s duty cycle.


2022 ◽  
pp. 1-21
Author(s):  
Sainath Waghmare ◽  
Bhalchandra P Puranik

Abstract Spinning-Elevation (SE) tracking system produces a decent image on the receiver surface; however, it is subjected to large variations in tracking speed. In this research, a Graphical Ray Tracing (GRT) model for Center-Oriented Spinning-Elevation (COSE) tracking method is developed to evaluate tracking angles. Instead of a target, a heliostat is pointed towards the on-field center point of the tower. Therefore, a spinning-axis of rotation is a line joining a heliostat, and a center of the tower and elevation-axis is perpendicular to it. This aiming strategy has shown a substantial reduction in rotations of spinning-motor. In contrast, the elevation-motor runs at slightly higher rotations than the target-oriented SE method for the same application. Also, COSE tracking method obtains better shape of the reflected image with less aberration on the receiver surface as compared to SE and the traditional Azimuth-Elevation (AE) method.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 164
Author(s):  
Yan Li ◽  
Mengyu Zhao ◽  
Huazhi Zhang ◽  
Yuanyuan Qu ◽  
Suyu Wang

A Multi-Agent Motion Prediction and Tracking method based on non-cooperative equilibrium (MPT-NCE) is proposed according to the fact that some multi-agent intelligent evolution methods, like the MADDPG, lack adaptability facing unfamiliar environments, and are unable to achieve multi-agent motion prediction and tracking, although they own advantages in multi-agent intelligence. Featured by a performance discrimination module using the time difference function together with a random mutation module applying predictive learning, the MPT-NCE is capable of improving the prediction and tracking ability of the agents in the intelligent game confrontation. Two groups of multi-agent prediction and tracking experiments are conducted and the results show that compared with the MADDPG method, in the aspect of prediction ability, the MPT-NCE achieves a prediction rate at more than 90%, which is 23.52% higher and increases the whole evolution efficiency by 16.89%; in the aspect of tracking ability, the MPT-NCE promotes the convergent speed by 11.76% while facilitating the target tracking by 25.85%. The proposed MPT-NCE method shows impressive environmental adaptability and prediction and tracking ability.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Xudong Guo ◽  
Shengnan Li ◽  
Youguo Hao ◽  
Zhongyu Luo ◽  
Xiangci Yan

Author(s):  
Suibin Huang ◽  
Kun Yang ◽  
Hua Xiao ◽  
Peng Han ◽  
Jian Qiu ◽  
...  

Author(s):  
Menglong WU ◽  
Cuizhu QIN ◽  
Hongxia DONG ◽  
Wenkai LIU ◽  
Xiaodong NIE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document