A single server queue with Markov modulated service rates and impatient customers

2015 ◽  
Vol 83-84 ◽  
pp. 1-15 ◽  
Author(s):  
Bara Kim ◽  
Jeongsim Kim
1995 ◽  
Vol 32 (4) ◽  
pp. 1103-1111 ◽  
Author(s):  
Qing Du

Consider a single-server queue with zero buffer. The arrival process is a three-level Markov modulated Poisson process with an arbitrary transition matrix. The time the system remains at level i (i = 1, 2, 3) is exponentially distributed with rate cα i. The arrival rate at level i is λ i and the service time is exponentially distributed with rate μ i. In this paper we first derive an explicit formula for the loss probability and then prove that it is decreasing in the parameter c. This proves a conjecture of Ross and Rolski's for a single-server queue with zero buffer.


1990 ◽  
Vol 22 (3) ◽  
pp. 676-705 ◽  
Author(s):  
David M. Lucantoni ◽  
Kathleen S. Meier-Hellstern ◽  
Marcel F. Neuts

We study a single-server queue in which the server takes a vacation whenever the system becomes empty. The service and vacation times and the arrival process are all assumed to be mutually independent. The successive service times and the vacation times each form independent, identically distributed sequences with general distributions. A new class of non-renewal arrival processes is introduced. As special cases, it includes the Markov-modulated Poisson process and the superposition of phase-type renewal processes.Algorithmically tractable equations for the distributions of the waiting times at an arbitrary time and at arrivals, as well as for the queue length at an arbitrary time, at arrivals, and at departures are established. Some factorizations, which are known for the case of renewal input, are generalized to this new framework and new factorizations are obtained. The algorithmic implementation of these results is discussed.


1995 ◽  
Vol 32 (04) ◽  
pp. 1103-1111 ◽  
Author(s):  
Qing Du

Consider a single-server queue with zero buffer. The arrival process is a three-level Markov modulated Poisson process with an arbitrary transition matrix. The time the system remains at level i (i = 1, 2, 3) is exponentially distributed with rate cα i . The arrival rate at level i is λ i and the service time is exponentially distributed with rate μ i . In this paper we first derive an explicit formula for the loss probability and then prove that it is decreasing in the parameter c. This proves a conjecture of Ross and Rolski's for a single-server queue with zero buffer.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Monita Baruah ◽  
Kailash C. Madan ◽  
Tillal Eldabi

We study the behavior of a batch arrival queuing system equipped with a single server providing general arbitrary service to customers with different service rates in two fluctuating modes of service. In addition, the server is subject to random breakdown. As soon as the server faces breakdown, the customer whose service is interrupted comes back to the head of the queue. As soon as repair process of the server is complete, the server immediately starts providing service in mode 1. Also customers waiting for service may renege (leave the queue) when there is breakdown or when server takes vacation. The system provides service with complete or reduced efficiency due to the fluctuating rates of service. We derive the steady state queue size distribution. Some special cases are discussed and numerical illustration is provided to see the effect and validity of the results.


1998 ◽  
Vol 35 (03) ◽  
pp. 741-747 ◽  
Author(s):  
Nicole Bäuerle ◽  
Tomasz Rolski

We consider a single server queue where the arrival process is a Markov-modulated Poisson process and service times are independent and identically distributed and independent from arrivals. The underlying intensity process is assumed ergodic with generator cQ, c > 0. We prove under some monotonicity assumptions on Q that the stationary workload W(c) is decreasing in c with respect to the increasing convex ordering.


2013 ◽  
Vol 60 (8) ◽  
pp. 661-677 ◽  
Author(s):  
Ravi Kumar ◽  
Mark E. Lewis ◽  
Huseyin Topaloglu

1994 ◽  
Vol 15 (1-4) ◽  
pp. 165-198 ◽  
Author(s):  
Douglas J. Morrice ◽  
Ravindra S. Gajulapalli ◽  
Sridhar R. Tayur

Sign in / Sign up

Export Citation Format

Share Document