Effects of exogenous creatine on population spike amplitude and on postanoxic hyperexcitability in brain slices

2003 ◽  
Vol 963 (1-2) ◽  
pp. 197-202 ◽  
Author(s):  
Monica Parodi ◽  
Renata Rebaudo ◽  
Luisa Perasso ◽  
Carlo Gandolfo ◽  
Aroldo Cupello ◽  
...  
1987 ◽  
Vol 410 (2) ◽  
pp. 357-361 ◽  
Author(s):  
William P. Clarke ◽  
Michael De Vivo ◽  
Sheryl G. Beck ◽  
Saul Maayani ◽  
Joseph Goldfarb

1988 ◽  
Vol 60 (3) ◽  
pp. 1077-1094 ◽  
Author(s):  
T. W. Berger ◽  
J. L. Eriksson ◽  
D. A. Ciarolla ◽  
R. J. Sclabassi

1. Nonlinear systems analytic techniques were used to characterize transformational properties of the network of neurons activated by perforant path input to the rabbit hippocampus. Trains of 4,064 impulses with randomly varying interimpulse intervals were used to stimulate perforant path fibers, and amplitudes of evoked dentate granule cell population spikes were measured. Interimpulse intervals of the random stimulus train were determined by a Poisson distribution with a mean interimpulse interval of 500 ms, and with intervals ranging from 1 to 5,000 ms. The response of dentate granule cells to this stimulation was assumed to reflect activity in the larger hippocampal network, because other subpopulations of neurons activated monosynaptically and polysynaptically within the hippocampal formation contribute to granule cell excitability through multiple feedforward and feedback pathways. System properties were characterized both for halothane anesthetized and chronically implanted, unanesthetized preparations. 2. Second-order kernel analysis showed that population spike amplitude was highly dependent on interimpulse interval. When population spikes of all latencies were included in the same analysis, stimulation impulses produced near-total suppression of spike amplitude when they were preceded 10-20 ms by another impulse in the train. Spike suppression extended to approximately 50 ms and was inversely related to length of the interimpulse interval. Suppression of granule cell response to intervals within the range of 10-50 ms was not influenced by halothane anesthesia. 3. Interstimulus intervals greater than approximately 50 ms resulted in a facilitation of population spike amplitude, with maximum facilitation occurring in response to intervals of 90-100 ms. The magnitude of maximum facilitation was significantly greater for anesthetized (129%) than for unanesthetized (74%) preparations. The range of intervals resulting in facilitation for unanesthetized animals could extend to 1,000-1,100 ms (average range, 61-714 ms). This was much greater than observed for population spikes recorded from anesthetized animals (50-364 ms), which exhibited suppression in response to intervals of approximately 300-700 ms. 4. Further analysis revealed that the nature of nonlinearities in population spike amplitude may depend on spike latency. For example, population spikes of "short" latency (3-4 or 4-5 ms, depending on the animal) exhibited only facilitation in response to interstimulus intervals of 1-4 ms.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 88 (2) ◽  
pp. 783-793 ◽  
Author(s):  
Paul S. Buckmaster ◽  
Emilia H. Wong

When they are 1–2 mo old, domesticated Mongolian gerbils begin having initially mild seizures which become more severe with age. To evaluate the development of this increasing seizure severity, we obtained field potential responses of the dentate gyrus to paired-pulse stimulation of the perforant path during seizures. In 18 gerbils that were 1.5–8.0 mo old, 73 seizures were analyzed. We measured population spike amplitude, the slope of the field excitatory postsynaptic potential (fEPSP), and the population spike amplitude ratio (2nd/1st) to evaluate excitatory and inhibitory synaptic processes. In gerbils <2 mo old, exposure to a novel environment was followed by an increase in population spike amplitude and then by seizure onset, but population spike amplitude ratio and fEPSP slope remained at baseline levels, and multiple population spikes were never evoked. As previously reported for chronically epileptic gerbils, these findings provide little evidence of a disinhibitory seizure-initiating mechanism in the dentate gyrus when young gerbils begin having seizures. In young gerbils evoked responses changed little during the behaviorally mild seizures. In contrast, most seizures in older gerbils included generalized convulsions, postictal depression, and evoked responses that changed dramatically. In older gerbils, shortly after seizure onset the dentate gyrus became hyperexcitable. Population spike amplitude and fEPSP slope peaked, and multiple population spikes were evoked, suggesting that mechanisms for seizure amplification and spread are more developed in older gerbils. Next, dentate gyrus excitability decreased precipitously, and population spike amplitude and fEPSP slope diminished. This period of hypoexcitability began before the end of the seizure, suggesting it may contribute to seizure termination. After the convulsive phase of the seizure, older gerbils remained motionless during a period of postictal depression, and population spike amplitude remained suppressed until the abrupt switch to normal exploratory activity. These findings suggest that the mechanisms of postictal depression may suppress granule cell excitability. The population spike amplitude ratio peaked after the convulsive phase and then gradually returned to the baseline level an average of 12 min after seizure onset, suggesting that granule cell inhibition recovers within minutes after a spontaneous seizure. Although it is unclear whether the seizure-related changes in evoked responses are a cause or an effect of increased seizure severity in older gerbils, their analysis provides clues about developmental changes in the mechanisms of seizure spread and termination.


2000 ◽  
Vol 71 (5) ◽  
pp. 435-440 ◽  
Author(s):  
Karen Urbanoski ◽  
John Harris ◽  
Karel Gijsbers ◽  
Bernardo Dubrovsky

Sign in / Sign up

Export Citation Format

Share Document