high frequency
Recently Published Documents


(FIVE YEARS 11956)



2022 ◽  
Vol 73 ◽  
pp. 103418
Fatma Krikid ◽  
Ahmad Karfoul ◽  
Sahbi Chaibi ◽  
Amar Kachenoura ◽  
Anca Nica ◽  

2022 ◽  
Vol 15 (1) ◽  
pp. 1-31
Philippos Papaphilippou ◽  
Jiuxi Meng ◽  
Nadeen Gebara ◽  
Wayne Luk

We present Hipernetch, a novel FPGA-based design for performing high-bandwidth network switching. FPGAs have recently become more popular in data centers due to their promising capabilities for a wide range of applications. With the recent surge in transceiver bandwidth, they could further benefit the implementation and refinement of network switches used in data centers. Hipernetch replaces the crossbar with a “combined parallel round-robin arbiter”. Unlike a crossbar, the combined parallel round-robin arbiter is easy to pipeline, and does not require centralised iterative scheduling algorithms that try to fit too many steps in a single or a few FPGA cycles. The result is a network switch implementation on FPGAs operating at a high frequency and with a low port-to-port latency. Our proposed Hipernetch architecture additionally provides a competitive switching performance approaching output-queued crossbar switches. Our implemented Hipernetch designs exhibit a throughput that exceeds 100 Gbps per port for switches of up to 16 ports, reaching an aggregate throughput of around 1.7 Tbps.

Vasudeva Gowdagere ◽  
Uma Bidikinamane Venkataramanaiah

<p><span>Fin field-effect transistor (FinFET) based analog circuits are gaining importance over metal oxide semiconductor field effect transistor (MOSFET) based circuits with stability and high frequency operations. Comparator that forms the sub block of most of the analog circuits is designed using operational transconductance amplifier (OTA). The OTA is designed using new design procedures and the comparator circuit is designed integrating the sub circuits with OTA. The building blocks of the comparator design such as input level shifter, differential pair with cascode stage and class AB amplifier for output swing are designed and integrated. Folded cascode circuit is used in the feedback path to maintain the common mode input value to a constant, so that the differential pair amplifies the differential signal. The gain of the comparator is achieved to be greater than 100 dB, with phase margin of 65°, common mode rejection ratio (CMRR) of above 70 dB and output swing from rail to rail. The circuit provides unity gain bandwidth of 5 GHz and is suitable for high sampling rate data converter circuits.</span></p>

2022 ◽  
Vol 168 ◽  
pp. 108677
Giacomo Moretti ◽  
Gianluca Rizzello ◽  
Marco Fontana ◽  
Stefan Seelecke

2022 ◽  
Vol 75 ◽  
pp. 301-319
Kaiyuan Wu ◽  
Yucai Zeng ◽  
Mingjin Zhang ◽  
Xiaobin Hong ◽  
Peimin Xie

2022 ◽  
Kristen R. Kita

Detection, classification, localization, and tracking (DCLT) of unmanned underwater vehicles (UUVs) in the presence of shipping traffic is a critical task for passive acoustic harbor security systems. In general, vessels can be tracked by their unique acoustic signature due to machinery vibration and cavitation noise. However, cavitation noise of UUVs is considerably quieter than ships and boats, making detection significantly more challenging. In this thesis, I demonstrated that it is possible to passively track a UUV from its highfrequency motor noise using a stationary array in shallow-water experiments with passing boats. First, causes of high frequency tones were determined through direct measurements of two UUVs at a range of speeds. From this analysis, common and dominant features of noise were established: strong tones at the motor’s pulse-width modulated frequency and its harmonics. From the unique acoustic signature of the motor, I derived a high-precision, remote sensing method for estimating propeller rotation rate. In shallow-water UUV field experiments, I demonstrated that detecting a UUV from motor noise, in comparison to broadband noise from the vehicle, reduces false alarms from 45% to 8.4% for 90% true detections. Beamforming on the motor noise, in comparison to broadband noise, improved the bearing accuracy by a factor of 3.2×. Because the signal is also high-frequency, the Doppler effect on motor noise is observable and I demonstrate that range rate can be measured. Furthermore, measuring motor noise was a superior method to the “detection of envelope modulation on noise” algorithm for estimating the propeller rotation rate. Extrapolating multiple measurements from the motor signature is significant because Bearing-Doppler-RPM measurements outperform traditional bearing-Doppler target motion analysis. In the unscented Kalman filter implementation, the tracking solution accuracy for bearing, bearing rate, range, and range rate improved by a factor 2.2×, 15.8×, 3.1×, and 6.2× respectively. These findings are significant for improving UUV localization and tracking, and for informing the next-generation of quiet UUV propulsion systems.

Sign in / Sign up

Export Citation Format

Share Document