scholarly journals Belyi functions for Archimedean solids

2000 ◽  
Vol 217 (1-3) ◽  
pp. 249-271 ◽  
Author(s):  
Nicolas Magot ◽  
Alexander Zvonkin
1988 ◽  
Vol 81 (4) ◽  
pp. 261-265
Author(s):  
Donovan R. Lichtenberg

Each of the nine covers of the Mathematics Teacher for 1985 contained pictures of two polyhedra. The covers for January through May showed the five regular polyhedra, or Platonic solids, along with their truncated versions. The latter are semiregular polyhedra, or Archimedean solids. For the months of September through December the covers displayed the remaining eight Archimedean solids.


2019 ◽  
Vol 7 (2) ◽  
pp. 47-55 ◽  
Author(s):  
В. Васильева ◽  
V. Vasil'eva

A brief history of the development of the regular polyhedrons theory is given. The work introduces the reader to modelling of the two most complex regular polyhedrons – Platonic solids: icosahedron and dodecahedron, in AutoCAD package. It is suggested to apply the method of the icosahedron and dodecahedron building using rectangles with their sides’ ratio like in the golden section, having taken the icosahedron’s golden rectangles as a basis. This method is well-known-of and is used for icosahedron, but is extremely rarely applied to dodecahedron, as in the available literature it is suggested to build the latter one as a figure dual to icosahedron. The work provides information on the first mentioning of this building method by an Italian mathematician L. Pacioli in his Divine Proportion book. In 1937, a Soviet mathematician D.I. Perepelkin published a paper On One Building Case of the Regular Icosahedron and Regular Dodecahedron, where he noted that this “method is not very well known of” and provided a building based “solely on dividing an intercept in the golden section ratio”. Taking into account the simplicity and good visualization of the building based on golden rectangles, a computer modeling of icosahedron and dodecahedron inscribed in a regular hexahedron is performed in the article. Given that, if we think in terms of the golden section concepts, the bigger side of the rectangle equals a whole intercept – side of the regular hexahedron, and the smaller sides of the icosahedron and dodecahedron rectangles are calculated as parts of the golden section ratio (of the bigger part and the smaller one, respectively). It is demonstrated how, using the scheme of a wireframe image of the dual connection of these polyhedrons as a basis, to calculate the sides of the rectangles in the golden section ratio in order to build an “infinite” cascade of these dual figures, as well as to build the icosahedron and dodecahedron circumscribed about the regular hexahedron. The method based on using the golden-section rectangles is also applied to building semiregular polyhedrons – Archimedean solids: a truncated icosahedron, truncated dodecahedron, icosidodecahedron, rhombicosidodecahedron, and rhombitruncated icosidodecahedron, which are based on icosahedron and dodecahedron.


1970 ◽  
Vol s2-2 (1) ◽  
pp. 125-132 ◽  
Author(s):  
S. A. Robertson ◽  
S. Carter
Keyword(s):  

2005 ◽  
Vol 285 (4) ◽  
pp. 681-691 ◽  
Author(s):  
Justin L. Burt ◽  
Jose L. Elechiguerra ◽  
Jose Reyes-Gasga ◽  
J. Martin Montejano-Carrizales ◽  
Miguel Jose-Yacaman

Sign in / Sign up

Export Citation Format

Share Document