Chapter 19: Influence of areas 17, 18, and 19 on receptive-field properties of neurons in the cat's posteromedial lateral suprasylvian visual cortex

Author(s):  
Peter D. Spear
2002 ◽  
Vol 88 (3) ◽  
pp. 1128-1135 ◽  
Author(s):  
Timothy J. Gawne ◽  
Julie M. Martin

We report here results from 45 primate V4 visual cortical neurons to the preattentive presentations of seven different patterns located in two separate areas of the same receptive field and to combinations of the patterns in the two locations. For many neurons, we could not determine any clear relationship for the responses to two simultaneous stimuli. However, for a substantial fraction of the neurons we found that the firing rate was well modeled as the maximum firing rate of each stimulus presented separately. It has previously been proposed that taking the maximum of the inputs (“MAX” operator) could be a useful operation for neurons in visual cortex, although there has until now been little direct physiological evidence for this hypothesis. Our results here provide direct support for the hypothesis that the MAX operator plays a significant (although certainly not exclusive) role in generating the receptive field properties of visual cortical neurons.


1978 ◽  
Vol 41 (4) ◽  
pp. 948-962 ◽  
Author(s):  
A. G. Leventhal ◽  
H. V. Hirsch

1. Receptive-field properties of neurons in the different layers of the visual cortex of normal adult cats were analyzed quantitatively. Neurons were classified into one of two groups: 1) S-cells, which have discrete on- and/or off-regions in their receptive fields and possess inhibitory side bands; 2) C-cells, which do not have discrete on- and off-regions in their receptive fields but display an on-off response to flashing stimuli. Neurons of this type rarely display side-band inhibition. 2. As a group, S-cells display lower relative degrees of binocularity and are more selective for stimulus orientation than C-cells. In addition, within a given lamina the S-cells have smaller receptive fields, lower cutoff velocities, lower peak responses to visual stimulation, and lower spontaneous activity than do the C-cells. 3. S-cells in all layers of the cortex display similar orientation sensitivities, mean spontaneous discharge rates, peak response to visual stimulation, and degrees of binocularity. 4. Many of the receptive-field properties of cortical cells vary with laminar location. Receptive-field sizes and cutoff velocities of S-cells and of C-cells are greater in layers V and VI than in layers II-IV. For S-cells, preferred velocities are also greater in layers V and VI than in layers II-IV. Furthermore, C-cells in layers V and VI display high mean spontaneous discharge rates, weak orientation preferences, high relative degrees of binocularity, and higher peak responses to visual stimulation when compared to C-cells in layers II and III. 5. The receptive-field properties of cells in layers V-VI of the striate cortex suggest that most neurons that have their somata in these laminae receive afferents from LGNd Y-cells. Hence, our results suggest that afferents from LGNd Y-cells may play a major part in the cortical control of subcortical visual functions.


1983 ◽  
Vol 49 (3) ◽  
pp. 804-818 ◽  
Author(s):  
D. G. Tieman ◽  
M. A. McCall ◽  
H. V. Hirsch

1. In order to investigate the effects of an imbalance in stimulation to the eyes without the confounding influence of continuous deprivation of one eye, we reared cats with unequal alternating monocular exposure (AME) and, for comparison, cats with equal AME. We recorded extracellularly from single cells in area 17 of visual cortex. 2. For unequal AME cats, a majority of the cells that were visually responsive were dominated by the eye that had received more patterned visual experience. The percentage of cells dominated by the more experienced eye was greater with a large imbalance in stimulation to the two eyes (AME 8/1, 77%) than with a small imbalance (AME 8/4, 62%). 3. For both equal AME cats and unequal AME cats, we obtained evidence for differences in cells activated by the contralateral and by the ipsilateral afferents. a) In equal AME cats receiving only 1 h of exposure per day, we obtained a greater dominance by the contralateral eye (60%) than in equal AME cats receiving 8 h of exposure per day (42%). b) Although a large imbalance in stimulation (AME 8/1) resulted in a shift in ocular dominance in both cortical hemispheres, a moderate imbalance (AME 8/4) resulted in a smaller shift, which was apparent only in the hemisphere ipsilateral to the less-experienced eye. 4. The percentage of cortical cells responsive to each eye was uniform throughout the depth of cortex. Thus, for the unequal AME cats, cells activated by the less-experienced eye were no more frequent in layer IV of visual cortex than in the infragranular and supragranular layers. 5. Although almost all cells recorded from AME cats had relatively normal receptive-field properties, three receptive-field properties of cells in unequal AME cats showed an effect of the rearing. In each case cells dominated by the less-experienced eye and recorded in the cortical hemisphere ipsilateral to it showed the largest changes. These cells a) were more poorly tuned, b) had lower cutoff velocities, and c) had smaller receptive fields. 6. It is suggested that cortical cells that putatively receive Y-cell afferents from the dorsal lateral geniculate nucleus (LGNd) are more affected by an imbalance in stimulation than are cortical cells that putatively receive X-cell afferents. Thus, the decrease in mean receptive-field area and cutoff velocity for the cells dominated by the less-experienced eye is suggested to be due to a greater shift in ocular dominance by the cortical cells receiving Y-cell afferents from the LGNd. 7. The interaction between binocular competition and deprivation of pattern vision may contribute to differences between monocularly deprived cats and unequal AME cats.


Sign in / Sign up

Export Citation Format

Share Document