On the spectral properties of discrete Schrödinger operators

Author(s):  
Anne Boutet de Monvel ◽  
Jaouad Sahbani
Author(s):  
Alberto Takase

AbstractWe consider separable 2D discrete Schrödinger operators generated by 1D almost Mathieu operators. For fixed Diophantine frequencies, we prove that for sufficiently small couplings the spectrum must be an interval. This complements a result by J. Bourgain establishing that for fixed couplings the spectrum has gaps for some (positive measure) Diophantine frequencies. Our result generalizes to separable multidimensional discrete Schrödinger operators generated by 1D quasiperiodic operators whose potential is analytic and whose frequency is Diophantine. The proof is based on the study of the thickness of the spectrum of the almost Mathieu operator and utilizes the Newhouse Gap Lemma on sums of Cantor sets.


This paper is concerned with spectral properties of the Schrödinger operator ─ ∆+ q with a complex potential q which has non-negative real part and satisfies weak integrability conditions. The problem is dealt with as a genuine non-self-adjoint problem, not as a perturbation of a self-adjoint one, and global and asymptotic estimates are obtained for the corresponding singular values. From these estimates information is obtained about the eigenvalues of the problem. By way of illustration, detailed calculations are given for an example in which the potential has at most polynomial growth.


Sign in / Sign up

Export Citation Format

Share Document