scholarly journals Geometric results on linear actions of reductive Lie groups for applications to homogeneous dynamics

2017 ◽  
Vol 38 (7) ◽  
pp. 2780-2800 ◽  
Author(s):  
RODOLPHE RICHARD ◽  
NIMISH A. SHAH

Several problems in number theory when reformulated in terms of homogenous dynamics involve study of limiting distributions of translates of algebraically defined measures on orbits of reductive groups. The general non-divergence and linearization techniques, in view of Ratner’s measure classification for unipotent flows, reduce such problems to dynamical questions about linear actions of reductive groups on finite-dimensional vector spaces. This article provides general results which resolve these linear dynamical questions in terms of natural group theoretic or geometric conditions.

Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter introduces the concept of stable completion and provides a concrete representation of unit vector Mathematical Double-Struck Capital A superscript n in terms of spaces of semi-lattices, with particular emphasis on the frontier between the definable and the topological categories. It begins by constructing a topological embedding of unit vector Mathematical Double-Struck Capital A superscript n into the inverse limit of a system of spaces of semi-lattices L(Hsubscript d) endowed with the linear topology, where Hsubscript d are finite-dimensional vector spaces. The description is extended to the projective setting. The linear topology is then related to the one induced by the finite level morphism L(Hsubscript d). The chapter also considers the condition that if a definable set in L(Hsubscript d) is an intersection of relatively compact sets, then it is itself relatively compact.


Author(s):  
W. T. Gowers ◽  
L. Milićević

Abstract Let $G_1, \ldots , G_k$ be finite-dimensional vector spaces over a prime field $\mathbb {F}_p$ . A multilinear variety of codimension at most $d$ is a subset of $G_1 \times \cdots \times G_k$ defined as the zero set of $d$ forms, each of which is multilinear on some subset of the coordinates. A map $\phi$ defined on a multilinear variety $B$ is multilinear if for each coordinate $c$ and all choices of $x_i \in G_i$ , $i\not =c$ , the restriction map $y \mapsto \phi (x_1, \ldots , x_{c-1}, y, x_{c+1}, \ldots , x_k)$ is linear where defined. In this note, we show that a multilinear map defined on a multilinear variety of codimension at most $d$ coincides on a multilinear variety of codimension $O_{k}(d^{O_{k}(1)})$ with a multilinear map defined on the whole of $G_1\times \cdots \times G_k$ . Additionally, in the case of general finite fields, we deduce similar (but slightly weaker) results.


2016 ◽  
pp. 213-317
Author(s):  
Stephen Andrilli ◽  
David Hecker

1976 ◽  
Vol 19 (4) ◽  
pp. 385-402 ◽  
Author(s):  
Bernhard Banaschewski ◽  
Evelyn Nelson

The binary tensor product, for modules over a commutative ring, has two different aspects: its connection with universal bilinear maps and its adjointness to the internal hom-functor. Furthermore, in the special situation of finite-dimensional vector spaces, the tensor product can also be described in terms of dual spaces and the internal hom-functor. The aim of this paper is to investigate these relationships in the setting of arbitrary concrete categories.


Sign in / Sign up

Export Citation Format

Share Document