scholarly journals TOPOLOGICAL CELL DECOMPOSITION AND DIMENSION THEORY IN P-MINIMAL FIELDS

2017 ◽  
Vol 82 (1) ◽  
pp. 347-358 ◽  
Author(s):  
PABLO CUBIDES KOVACSICS ◽  
LUCK DARNIÈRE ◽  
EVA LEENKNEGT

AbstractThis paper addresses some questions about dimension theory for P-minimal structures. We show that, for any definable set A, the dimension of $\bar A\backslash A$ is strictly smaller than the dimension of A itself, and that A has a decomposition into definable, pure-dimensional components. This is then used to show that the intersection of finitely many definable dense subsets of A is still dense in A. As an application, we obtain that any definable function $f:D \subseteq {K^m} \to {K^n}$ is continuous on a dense, relatively open subset of its domain D, thereby answering a question that was originally posed by Haskell and Macpherson.In order to obtain these results, we show that P-minimal structures admit a type of cell decomposition, using a topological notion of cells inspired by real algebraic geometry.

1982 ◽  
Vol 2 (2) ◽  
pp. 139-158 ◽  
Author(s):  
S. G. Dani

AbstractLet(where t ε ℝ) and let μ be the G-invariant probability measure on G/Γ. We show that if x is a non-periodic point of the flow given by the (ut)-action on G/Γ then the (ut)-orbit of x is uniformly distributed with respect to μ; that is, if Ω is an open subset whose boundary has zero measure, and l is the Lebesque measure on ℝ then, as T→∞, converges to μ(Ω).


2018 ◽  
Vol 83 (04) ◽  
pp. 1667-1679
Author(s):  
MATÍAS MENNI

AbstractLet ${\cal E}$ be a topos, ${\rm{Dec}}\left( {\cal E} \right) \to {\cal E}$ be the full subcategory of decidable objects, and ${{\cal E}_{\neg \,\,\neg }} \to {\cal E}$ be the full subcategory of double-negation sheaves. We give sufficient conditions for the existence of a Unity and Identity ${\cal E} \to {\cal S}$ for the two subcategories of ${\cal E}$ above, making them Adjointly Opposite. Typical examples of such ${\cal E}$ include many ‘gros’ toposes in Algebraic Geometry, simplicial sets and other toposes of ‘combinatorial’ spaces in Algebraic Topology, and certain models of Synthetic Differential Geometry.


2009 ◽  
Vol 52 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Jakob Cimprič

AbstractWe present a new approach to noncommutative real algebraic geometry based on the representation theory of C*-algebras. An important result in commutative real algebraic geometry is Jacobi's representation theorem for archimedean quadratic modules on commutative rings. We show that this theorem is a consequence of the Gelfand–Naimark representation theorem for commutative C*-algebras. A noncommutative version of Gelfand–Naimark theory was studied by I. Fujimoto. We use his results to generalize Jacobi's theorem to associative rings with involution.


2014 ◽  
Vol 11 (2) ◽  
pp. 977-1045
Author(s):  
Didier Henrion ◽  
Salma Kuhlmann ◽  
Victor Vinnikov

Sign in / Sign up

Export Citation Format

Share Document