probability measure
Recently Published Documents


TOTAL DOCUMENTS

629
(FIVE YEARS 118)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Eddy Keming Chen ◽  
Roderich Tumulka

AbstractLet $$\mathscr {H}$$ H be a finite-dimensional complex Hilbert space and $$\mathscr {D}$$ D the set of density matrices on $$\mathscr {H}$$ H , i.e., the positive operators with trace 1. Our goal in this note is to identify a probability measure u on $$\mathscr {D}$$ D that can be regarded as the uniform distribution over $$\mathscr {D}$$ D . We propose a measure on $$\mathscr {D}$$ D , argue that it can be so regarded, discuss its properties, and compute the joint distribution of the eigenvalues of a random density matrix distributed according to this measure.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jun Li ◽  
Fubao Xi

<p style='text-indent:20px;'>We investigate the long time behavior for a class of regime-switching diffusion processes. Based on direct evaluation of moments and exponential functionals of hitting time of the underlying process, we adopt coupling method to obtain existence and uniqueness of the invariant probability measure and establish explicit exponential bounds for the rate of convergence to the invariant probability measure in total variation norm. In addition, we provide some concrete examples to illustrate our main results which reveal impact of random switching on stochastic stability and convergence rate of the system.</p>


Nonlinearity ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 998-1035
Author(s):  
Evan Camrud ◽  
David P Herzog ◽  
Gabriel Stoltz ◽  
Maria Gordina

Abstract Convergence to equilibrium of underdamped Langevin dynamics is studied under general assumptions on the potential U allowing for singularities. By modifying the direct approach to convergence in L 2 pioneered by Hérau and developed by Dolbeault et al, we show that the dynamics converges exponentially fast to equilibrium in the topologies L 2(dμ) and L 2(W* dμ), where μ denotes the invariant probability measure and W* is a suitable Lyapunov weight. In both norms, we make precise how the exponential convergence rate depends on the friction parameter γ in Langevin dynamics, by providing a lower bound scaling as min(γ, γ −1). The results hold for usual polynomial-type potentials as well as potentials with singularities such as those arising from pairwise Lennard-Jones interactions between particles.


2021 ◽  
Author(s):  
Hao Li ◽  
Kun Zhang

Abstract In the field of graph theory, the shortest path problem is one of the most significant problems. However, since varieties of indeterminated factors appear in complex networks, determining of the shortest path from one vertex to another in complex networks may be a lot more complicated than the cases in deterministic networks. To illustrate this problem, the model of uncertain random digraph will be proposed via chance theory, in which some arcs exist with degrees in probability measure and others exist with degrees in uncertain measure. The main focus of this paper is to investigate the main properties of the shortest path in uncetain random digraph. Methods and algorithms are designed to calculate the distribution of shortest path more efficiently. Besides, some numerical examples are presented to show the efficiency of these methods and algorithms.


Author(s):  
Valter Moretti ◽  
Christiaan J. F. van de Ven

The algebraic properties of a strict deformation quantization are analyzed on the classical phase space [Formula: see text]. The corresponding quantization maps enable us to take the limit for [Formula: see text] of a suitable sequence of algebraic vector states induced by [Formula: see text]-dependent eigenvectors of several quantum models, in which the sequence converges to a probability measure on [Formula: see text], defining a classical algebraic state. The observables are here represented in terms of a Berezin quantization map which associates classical observables (functions on the phase space) to quantum observables (elements of [Formula: see text] algebras) parametrized by [Formula: see text]. The existence of this classical limit is in particular proved for ground states of a wide class of Schrödinger operators, where the classical limiting state is obtained in terms of a Haar integral. The support of the classical state (a probability measure on the phase space) is included in certain orbits in [Formula: see text] depending on the symmetry of the potential. In addition, since this [Formula: see text]-algebraic approach allows for both quantum and classical theories, it is highly suitable to study the theoretical concept of spontaneous symmetry breaking (SSB) as an emergent phenomenon when passing from the quantum realm to the classical world by switching off [Formula: see text]. To this end, a detailed mathematical description is outlined and it is shown how this algebraic approach sheds new light on spontaneous symmetry breaking in several physical models.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 275
Author(s):  
Alexander A. Balinsky ◽  
Anatolij K. Prykarpatski

Finding effective finite-dimensional criteria for closed subspaces in Lp, endowed with some additional functional constraints, is a well-known and interesting problem. In this work, we are interested in some sufficient constraints on closed functional subspaces, Sp⊂Lp, whose finite dimensionality is not fixed a priori and can not be checked directly. This is often the case in diverse applications, when a closed subspace Sp⊂Lp is constructed by means of some additional conditions and constraints on Lp with no direct exemplification of the functional structure of its elements. We consider a closed topological subspace, Sp(q), of the functional Banach space, Lp(M,dμ), and, moreover, one assumes that additionally, Sp(q)⊂Lq(M,dν) is subject to a probability measure ν on M. Then, we show that closed subspaces of Lp(M,dμ)∩Lq(M,dν) for q>max{1,p},p>0 are finite dimensional. The finite dimensionality result concerning the case when q>p>0 is open and needs more sophisticated techniques, mainly based on analysis of the complementary subspaces to Lp(M,dμ)∩Lq(M,dν).


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yoon Tae Kim ◽  
Hyun Suk Park

In this paper, we consider a quantitative fourth moment theorem for functions (random variables) defined on the Markov triple E , μ , Γ , where μ is a probability measure and Γ is the carré du champ operator. A new technique is developed to derive the fourth moment bound in a normal approximation on the random variable of a general Markov diffusion generator, not necessarily belonging to a fixed eigenspace, while previous works deal with only random variables to belong to a fixed eigenspace. As this technique will be applied to the works studied by Bourguin et al. (2019), we obtain the new result in the case where the chaos grade of an eigenfunction of Markov diffusion generator is greater than two. Also, we introduce the chaos grade of a new notion, called the lower chaos grade, to find a better estimate than the previous one.


Analysis ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bilel Selmi

Abstract This paper studies the behavior of the lower and upper multifractal Hewitt–Stromberg functions under slices onto ( n - m ) {(n-m)} -dimensional subspaces. More precisely, we discuss the relationship between the multifractal Hewitt–Stromberg functions of a compactly supported Borel probability measure and those of slices or sections of the measure. In addition, we prove that if μ has a finite m-energy and q lies in a certain somewhat restricted interval, then these functions satisfy the expected adding of co-dimensions formula.


Author(s):  
David P. Bourne ◽  
Riccardo Cristoferi

AbstractWe prove an asymptotic crystallization result in two dimensions for a class of nonlocal particle systems. To be precise, we consider the best approximation with respect to the 2-Wasserstein metric of a given absolutely continuous probability measure $$f \mathrm {d}x$$ f d x by a discrete probability measure $$\sum _i m_i \delta _{z_i}$$ ∑ i m i δ z i , subject to a constraint on the particle sizes $$m_i$$ m i . The locations $$z_i$$ z i of the particles, their sizes $$m_i$$ m i , and the number of particles are all unknowns of the problem. We study a one-parameter family of constraints. This is an example of an optimal location problem (or an optimal sampling or quantization problem) and it has applications in economics, signal compression, and numerical integration. We establish the asymptotic minimum value of the (rescaled) approximation error as the number of particles goes to infinity. In particular, we show that for the constrained best approximation of the Lebesgue measure by a discrete measure, the discrete measure whose support is a triangular lattice is asymptotically optimal. In addition, we prove an analogous result for a problem where the constraint is replaced by a penalization. These results can also be viewed as the asymptotic optimality of the hexagonal tiling for an optimal partitioning problem. They generalise the crystallization result of Bourne et al. (Commun Math Phys, 329: 117–140, 2014) from a single particle system to a class of particle systems, and prove a case of a conjecture by Bouchitté et al. (J Math Pures Appl, 95:382–419, 2011). Finally, we prove a crystallization result which states that optimal configurations with energy close to that of a triangular lattice are geometrically close to a triangular lattice.


Sign in / Sign up

Export Citation Format

Share Document