Variations on results on orders of products in finite groups

Author(s):  
Juan Martínez ◽  
Alexander Moretó

In 2014, Baumslag and Wiegold proved that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. This has led to a number of results that characterize the nilpotence of a group (or the existence of nilpotent Hall subgroups, or the existence of normal Hall subgroups) in terms of prime divisors of element orders. Here, we look at these results with a new twist. The first of our main results asserts that G is nilpotent if and only if o(xy) ⩽ o(x)o(y) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold theorem. The proof of this result is elementary. We prove some variations of this result that depend on the classification of finite simple groups.

2019 ◽  
Vol 149 (5) ◽  
pp. 1153-1162
Author(s):  
Alexander Moretó ◽  
Azahara Sáez

AbstractBaumslag and Wiegold have recently proven that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. Motivated by this surprisingly new result, we have obtained related results that just consider sets of prime divisors of element orders. For instance, the first of our main results asserts that G is nilpotent if and only if π(o(xy)) = π(o(x)o(y)) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold Theorem. While this result is still elementary, we also obtain local versions that, for instance, characterize the existence of a normal Sylow p-subgroup in terms of sets of prime divisors of element orders. These results are deeper and our proofs rely on results that depend on the classification of finite simple groups.


2005 ◽  
Vol 12 (02) ◽  
pp. 199-204
Author(s):  
Shirong Li ◽  
Rex S. Dark

Let G be a finite group and p an odd prime. Let [Formula: see text] be the set of proper subgroups M of G with |G:M| not a prime power and |G:M|p=1. In this paper, we investigate the structure of G if every member of [Formula: see text] is nilpotent. In particular, a new characterization of PSL(2,7) is obtained. The proof of the theorem depends on the classification of finite simple groups.


2005 ◽  
Vol 78 (2) ◽  
pp. 291-295 ◽  
Author(s):  
László Héthelyi ◽  
Burkhard Külshammer

AbstractWe show that, for any positive integer k, there are only finitely many finite groups, up to isomorphism, with exactly k conjugacy classes of elements of prime power order. This generalizes a result of E. Landau from 1903. The proof of our generalization makes use of the classification of finite simple groups.


2006 ◽  
Vol 13 (03) ◽  
pp. 471-480
Author(s):  
Zhikai Zhang

In this paper, we first determine the structure of the Sylow p-subgroup P of a finite group G containing no elements of order 2p (p > 2), and then show that the Broué Abelian Defect Groups Conjecture is true for the principal p-block of G. The result depends on the classification of finite simple groups.


Author(s):  
Hossein Moradi ◽  
Mohammad Reza Darafsheh ◽  
Ali Iranmanesh

Let G be a finite group. The prime graph Γ(G) of G is defined as follows: The set of vertices of Γ(G) is the set of prime divisors of |G| and two distinct vertices p and p' are connected in Γ(G), whenever G has an element of order pp'. A non-abelian simple group P is called recognizable by prime graph if for any finite group G with Γ(G)=Γ(P), G has a composition factor isomorphic to P. In [4] proved finite simple groups 2Dn(q), where n ≠ 4k are quasirecognizable by prime graph. Now in this paper we discuss the quasirecognizability by prime graph of the simple groups 2D2k(q), where k ≥ 9 and q is a prime power less than 105.


2009 ◽  
Vol 08 (03) ◽  
pp. 389-399 ◽  
Author(s):  
LIANGCAI ZHANG ◽  
GUIYUN CHEN ◽  
SHUNMIN CHEN ◽  
XUEFENG LIU

Based on the prime graph of a finite group, its order can be divided into a product of some co-prime positive integers. These integers are called order components of this group. If there exist exactly k nonisomorphic finite groups with the same set of order components of a given finite group, we say that it is a k-recognizable group by its order component(s). In the present paper, we obtain that all finite simple Kn-groups (n = 3, 4) except U4(2) and A10can be uniquely determined by their order components. Moreover, U4(2) is 2-recognizable and A10is k-recognizable, where k denotes the number of all nonisomorphic classes of groups with the same order as A10. As a consequence of this result we can obtain some interesting corollaries.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


Author(s):  
Thomas J. Laffey ◽  
Desmond MacHale

AbstractLet G be a finite group and let Aut(G) be its automorphism group. Then G is called a k-orbit group if G has k orbits (equivalence classes) under the action of Aut(G). (For g, hG, we have g ~ h if ga = h for some Aut(G).) It is shown that if G is a k-orbit group, then kGp + 1, where p is the least prime dividing the order of G. The 3-orbit groups which are not of prime-power order are classified. It is shown that A5 is the only insoluble 4-orbit group, and a structure theorem is proved about soluble 4-orbit groups.


2021 ◽  
Vol 13 (3) ◽  
pp. 59
Author(s):  
Nader Taffach

In this paper, we study the problem of how a finite group can be generated by some subgroups. In order to the finite simple groups, we show that any finite non-abelian simple group can be generated by two Sylow p1 - and p_2 -subgroups, where p_1  and p_2  are two different primes. We also show that for a given different prime numbers p  and q , any finite group can be generated by a Sylow p -subgroup and a q -subgroup.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650054
Author(s):  
E. N. Myslovets

Let [Formula: see text] be a class of finite simple groups. We say that a finite group [Formula: see text] is a [Formula: see text]-group if all composition factors of [Formula: see text] are contained in [Formula: see text]. A group [Formula: see text] is called [Formula: see text]-supersoluble if every chief [Formula: see text]-factor of [Formula: see text] is a simple group. In this paper, properties of mutually permutable products of [Formula: see text]-supersoluble finite groups are studied. Some earlier results on mutually permutable products of [Formula: see text]-supersoluble groups (SC-groups) appear as particular cases.


Sign in / Sign up

Export Citation Format

Share Document