A Paleo-Lake and wetland paleoecology associated with human use of the distal Old River Bed Delta at the Pleistocene-Holocene transition in the Bonneville Basin, Utah, USA

2021 ◽  
pp. 1-19
Author(s):  
Manuel R. Palacios-Fest ◽  
Daron Duke ◽  
D. Craig Young ◽  
Jason D. Kirk ◽  
Charles G. Oviatt

Abstract Mollusk and ostracode assemblages from the distal Old River Bed delta (ORBD) contribute to our understanding of the Lake Bonneville basin Pleistocene-Holocene transition (PHT) wetland and human presence on the ORBD (ca. 13,000–7500 cal yr BP). Located on U.S. Air Force-managed lands of the Great Salt Lake Desert (GSLD) in western Utah, USA, the area provided 30 samples from 12 localities. The biological assemblages and the potential water sources using 87Sr/86Sr analyses showed wetland expansion and contraction across the PHT, including the Younger-Dryas Chronozone (YDC). The record reflects cold, freshwater conditions, which is uncharacteristic of the Great Salt Lake Desert, after recession of Lake Bonneville. Lymnaea stagnalis jugularis, Cytherissa lacustris, and possibly Candona sp. cf. C. adunca, an endemic and extinct species only reported from Lake Bonneville, suggest cold-water environments. Between 13,000–12,400 cal yr BP, a shallow lake formed, referred to as the Old River Bed delta lake, fed by Lake Gunnison, as shown by 87Sr/86Sr ratios of 0.71024–0.71063 in mollusk fossils collected at the ORBD, characteristic of the Sevier basin. These findings add paleoenvironmental context to the long-term use of the ORBD by humans in constantly changing wetland habitats between 13,000–9500 cal yr BP.

2017 ◽  
Vol 4 ◽  
pp. 181-214 ◽  
Author(s):  
Mark Milligan ◽  
H. Gregory McDonald

Pleistocene Lake Bonneville created many classic examples of lacustrine shoreline landforms, which preserve a wide variety of vertebrate fossils. _is _eld guide provides a review of the published literature for a sampling of the lake’s world-class localities. _is guide also provides a brief overview of modern Great Salt Lake and its microbialites recently exposed by near-record low lake levels. Stops include G.K. Gilbert Geologic View Park, Draper spit, Steep Mountain beach, Point of the Mountain spit, American Fork delta, Stockton Bar, and Great Salt Lake State Park.


Ecosphere ◽  
2011 ◽  
Vol 2 (3) ◽  
pp. art33 ◽  
Author(s):  
Gary E. Belovsky ◽  
Doyle Stephens ◽  
Clay Perschon ◽  
Paul Birdsey ◽  
Don Paul ◽  
...  

2021 ◽  
Author(s):  
Brian L. Cousens ◽  
Nancy Riggs

COVID-19 made for a highly unusual year as it affected almost every facet of life. The pandemic made gathering and visiting the field nearly impossible as we quarantined and moved into virtual spaces. Three groups submitted guides for publication during the height of the pandemic: two for trips that would have taken place during the GSA Annual Meeting in Montréal, Canada, and one from the Rocky Mountain Section Meeting in Provo, Utah, USA. Readers will enjoy these journeys to the Ottawa aulacogen/graben on the Northeast U.S.–Canadian border; the southern Québec Appalachians; and Lake Bonneville, the Wasatch Range, and Great Salt Lake in Utah.


2003 ◽  
Vol 60 (2) ◽  
pp. 200-210 ◽  
Author(s):  
Charles G. Oviatt ◽  
David B. Madsen ◽  
Dave N. Schmitt

AbstractField investigations at Dugway Proving Ground in western Utah have produced new data on the chronology and human occupation of late Pleistocene and early Holocene lakes, rivers, and wetlands in the Lake Bonneville basin. We have classified paleo-river channels of these ages as “gravel channels” and “sand channels.” Gravel channels are straight to curved, digitate, and have abrupt bulbous ends. They are composed of fine gravel and coarse sand, and are topographically inverted (i.e., they stand higher than the surrounding mudflats). Sand channels are younger and sand filled, with well-developed meander-scroll morphology that is truncated by deflated mudflat surfaces. Gravel channels were formed by a river that originated as overflow from the Sevier basin along the Old River Bed during the late regressive phases of Lake Bonneville (after 12,500 and prior to 11,000 14C yr B.P.). Dated samples from sand channels and associated fluvial overbank and wetland deposits range in age from 11,000 to 8800 14C yr B.P., and are probably related to continued Sevier-basin overflow and to groundwater discharge. Paleoarchaic foragers occupied numerous sites on gravel-channel landforms and adjacent to sand channels in the extensive early Holocene wetland habitats. Reworking of tools and limited toolstone diversity is consistent with theoretical models suggesting Paleoarchaic foragers in the Old River Bed delta were less mobile than elsewhere in the Great Basin.


2017 ◽  
Vol 4 ◽  
pp. 181-214 ◽  
Author(s):  
Mark Milligan ◽  
H. McDonald

Pleistocene Lake Bonneville created many classic examples of lacustrine shoreline landforms, which preserve a wide variety of vertebrate fossils. This field guide provides a review of the published literature for a sampling of the lake’s world-class localities. This guide also provides a brief overview of modern Great Salt Lake and its microbialites recently exposed by near-record low lake levels. Stops include G.K. Gilbert Geologic View Park, Draper spit, Steep Mountain beach, Point of the Mountain spit, American Fork delta, Stockton Bar, and Great Salt Lake State Park.


2021 ◽  
pp. 71-94
Author(s):  
Charles G. (Jack) Oviatt ◽  
Genevieve Atwood ◽  
Benjamin J.C. Laabs ◽  
Paul W. Jewell ◽  
Harry M. Jol

ABSTRACT On this field trip we visit three sites in the Salt Lake Valley, Utah, USA, where we examine the geomorphology of the Bonneville shoreline, the history of glaciation in the Wasatch Range, and shorezone geomorphology of Great Salt Lake. Stop 1 is at Steep Mountain bench, adjacent to Point of the Mountain in the Traverse Mountains, where the Bonneville shoreline is well developed and we can examine geomorphic evidence for the behavior of Lake Bonneville at its highest levels. At Stop 2 at the mouths of Little Cottonwood and Bells Canyons in the Wasatch Range, we examine geochronologic and geomorphic evidence for the interaction of mountain glaciers with Lake Bonneville. At the Great Salt Lake at Stop 3, we can examine modern processes and evidence of the Holocene history of the lake, and appreciate how Lake Bonneville and Great Salt Lake are two end members of a long-lived lacustrine system in one of the tectonically generated basins of the Great Basin.


Sign in / Sign up

Export Citation Format

Share Document