On the Problem of Establishing the Existence of Stationary Distributions for Continuous-Time Markov Chains

1993 ◽  
Vol 7 (4) ◽  
pp. 529-543 ◽  
Author(s):  
P. K. Pollett ◽  
P. G. Taylor

We consider the problem of establishing the existence of stationary distributions for continuous-time Markov chains directly from the transition rates Q. Given an invariant probability distribution m for Q, we show that a necessary and sufficient condition for m to be a stationary distribution for the minimal process is that Q be regular. We provide sufficient conditions for the regularity of Q that are simple to verify in practice, thus allowing one to easily identify stationary distributions for a variety of models. To illustrate our results, we shall consider three classes of multidimensional Markov chains, namely, networks of queues with batch movements, semireversible queues, and partially balanced Markov processes.

2002 ◽  
Vol 39 (01) ◽  
pp. 197-212 ◽  
Author(s):  
F. Javier López ◽  
Gerardo Sanz

Let (X t ) and (Y t ) be continuous-time Markov chains with countable state spaces E and F and let K be an arbitrary subset of E x F. We give necessary and sufficient conditions on the transition rates of (X t ) and (Y t ) for the existence of a coupling which stays in K. We also show that when such a coupling exists, it can be chosen to be Markovian and give a way to construct it. In the case E=F and K ⊆ E x E, we see how the problem of construction of the coupling can be simplified. We give some examples of use and application of our results, including a new concept of lumpability in Markov chains.


2002 ◽  
Vol 39 (1) ◽  
pp. 197-212 ◽  
Author(s):  
F. Javier López ◽  
Gerardo Sanz

Let (Xt) and (Yt) be continuous-time Markov chains with countable state spaces E and F and let K be an arbitrary subset of E x F. We give necessary and sufficient conditions on the transition rates of (Xt) and (Yt) for the existence of a coupling which stays in K. We also show that when such a coupling exists, it can be chosen to be Markovian and give a way to construct it. In the case E=F and K ⊆ E x E, we see how the problem of construction of the coupling can be simplified. We give some examples of use and application of our results, including a new concept of lumpability in Markov chains.


1991 ◽  
Vol 23 (02) ◽  
pp. 277-292 ◽  
Author(s):  
P. K. Pollett

The problem of determining invariant measures for continuous-time Markov chains directly from their transition rates is considered. The major result provides necessary and sufficient conditions for the existence of a unique ‘single-exit' chain with a specified invariant measure. This generalizes a result of Hou Chen-Ting and Chen Mufa that deals with symmetrically reversible chains. A simple sufficient condition for the existence of a unique honest chain for which the specified measure is invariant is also presented.


1991 ◽  
Vol 23 (2) ◽  
pp. 277-292 ◽  
Author(s):  
P. K. Pollett

The problem of determining invariant measures for continuous-time Markov chains directly from their transition rates is considered. The major result provides necessary and sufficient conditions for the existence of a unique ‘single-exit' chain with a specified invariant measure. This generalizes a result of Hou Chen-Ting and Chen Mufa that deals with symmetrically reversible chains. A simple sufficient condition for the existence of a unique honest chain for which the specified measure is invariant is also presented.


1993 ◽  
Vol 25 (01) ◽  
pp. 82-102
Author(s):  
M. G. Nair ◽  
P. K. Pollett

In a recent paper, van Doorn (1991) explained how quasi-stationary distributions for an absorbing birth-death process could be determined from the transition rates of the process, thus generalizing earlier work of Cavender (1978). In this paper we shall show that many of van Doorn's results can be extended to deal with an arbitrary continuous-time Markov chain over a countable state space, consisting of an irreducible class, C, and an absorbing state, 0, which is accessible from C. Some of our results are extensions of theorems proved for honest chains in Pollett and Vere-Jones (1992). In Section 3 we prove that a probability distribution on C is a quasi-stationary distribution if and only if it is a µ-invariant measure for the transition function, P. We shall also show that if m is a quasi-stationary distribution for P, then a necessary and sufficient condition for m to be µ-invariant for Q is that P satisfies the Kolmogorov forward equations over C. When the remaining forward equations hold, the quasi-stationary distribution must satisfy a set of ‘residual equations' involving the transition rates into the absorbing state. The residual equations allow us to determine the value of µ for which the quasi-stationary distribution is µ-invariant for P. We also prove some more general results giving bounds on the values of µ for which a convergent measure can be a µ-subinvariant and then µ-invariant measure for P. The remainder of the paper is devoted to the question of when a convergent µ-subinvariant measure, m, for Q is a quasi-stationary distribution. Section 4 establishes a necessary and sufficient condition for m to be a quasi-stationary distribution for the minimal chain. In Section 5 we consider ‘single-exit' chains. We derive a necessary and sufficient condition for there to exist a process for which m is a quasi-stationary distribution. Under this condition all such processes can be specified explicitly through their resolvents. The results proved here allow us to conclude that the bounds for µ obtained in Section 3 are, in fact, tight. Finally, in Section 6, we illustrate our results by way of two examples: regular birth-death processes and a pure-birth process with absorption.


1993 ◽  
Vol 30 (3) ◽  
pp. 518-528 ◽  
Author(s):  
Frank Ball ◽  
Geoffrey F. Yeo

We consider lumpability for continuous-time Markov chains and provide a simple probabilistic proof of necessary and sufficient conditions for strong lumpability, valid in circumstances not covered by known theory. We also consider the following marginalisability problem. Let {X{t)} = {(X1(t), X2(t), · ··, Xm(t))} be a continuous-time Markov chain. Under what conditions are the marginal processes {X1(t)}, {X2(t)}, · ··, {Xm(t)} also continuous-time Markov chains? We show that this is related to lumpability and, if no two of the marginal processes can jump simultaneously, then they are continuous-time Markov chains if and only if they are mutually independent. Applications to ion channel modelling and birth–death processes are discussed briefly.


CAUCHY ◽  
2011 ◽  
Vol 2 (1) ◽  
pp. 18
Author(s):  
Imam Fahcruddin

<div class="standard"><a id="magicparlabel-2384">This paper studies a solution of the fractional continuous-time linier system. Necessary and sufficient condition were established for the internal and external positivity of fractional systems. Sufficient conditions are given for the reachability of fractional positive systems. </a></div>


1994 ◽  
Vol 31 (04) ◽  
pp. 897-910
Author(s):  
P. K. Pollett

In [14] a necessary and sufficient condition was obtained for there to exist uniquely a Q-process with a specified invariant measure, under the assumption that Q is a stable, conservative, single-exit matrix. The purpose of this note is to demonstrate that, for an arbitrary stable and conservative q-matrix, the same condition suffices for the existence of a suitable Q-process, but that this process might not be unique. A range of examples is considered, including pure-birth processes, a birth process with catastrophes, birth-death processes and the Markov branching process with immigration.


2000 ◽  
Vol 32 (4) ◽  
pp. 1064-1076 ◽  
Author(s):  
F. Javier López ◽  
Servet Martínez ◽  
Gerardo Sanz

For continuous-time Markov chains with semigroups P, P' taking values in a partially ordered set, such that P ≤ stP', we show the existence of an order-preserving Markovian coupling and give a way to construct it. From our proof, we also obtain the conditions of Brandt and Last for stochastic domination in terms of the associated intensity matrices. Our result is applied to get necessary and sufficient conditions for the existence of Markovian couplings between two Jackson networks.


1993 ◽  
Vol 25 (1) ◽  
pp. 82-102 ◽  
Author(s):  
M. G. Nair ◽  
P. K. Pollett

In a recent paper, van Doorn (1991) explained how quasi-stationary distributions for an absorbing birth-death process could be determined from the transition rates of the process, thus generalizing earlier work of Cavender (1978). In this paper we shall show that many of van Doorn's results can be extended to deal with an arbitrary continuous-time Markov chain over a countable state space, consisting of an irreducible class, C, and an absorbing state, 0, which is accessible from C. Some of our results are extensions of theorems proved for honest chains in Pollett and Vere-Jones (1992).In Section 3 we prove that a probability distribution on C is a quasi-stationary distribution if and only if it is a µ-invariant measure for the transition function, P. We shall also show that if m is a quasi-stationary distribution for P, then a necessary and sufficient condition for m to be µ-invariant for Q is that P satisfies the Kolmogorov forward equations over C. When the remaining forward equations hold, the quasi-stationary distribution must satisfy a set of ‘residual equations' involving the transition rates into the absorbing state. The residual equations allow us to determine the value of µ for which the quasi-stationary distribution is µ-invariant for P. We also prove some more general results giving bounds on the values of µ for which a convergent measure can be a µ-subinvariant and then µ-invariant measure for P. The remainder of the paper is devoted to the question of when a convergent µ-subinvariant measure, m, for Q is a quasi-stationary distribution. Section 4 establishes a necessary and sufficient condition for m to be a quasi-stationary distribution for the minimal chain. In Section 5 we consider ‘single-exit' chains. We derive a necessary and sufficient condition for there to exist a process for which m is a quasi-stationary distribution. Under this condition all such processes can be specified explicitly through their resolvents. The results proved here allow us to conclude that the bounds for µ obtained in Section 3 are, in fact, tight. Finally, in Section 6, we illustrate our results by way of two examples: regular birth-death processes and a pure-birth process with absorption.


Sign in / Sign up

Export Citation Format

Share Document