Some best-approximation theorems in tensor-product spaces

Author(s):  
W. A. Light ◽  
E. W. Cheney

We begin by describing a concrete example from the class of problems to be considered. A continuous bivariate function f defined on the square |t| ≤ 1, |s| ≤ 1 is to be approximated by a tensor-product form involving univariate functions. For example, the approximation may be prescribed to have the formin which the Ti are the Tchebycheff polynomials, and the coefficient functions xi(t) and yi(s) are to be chosen to achieve a good or best approximation. Will a best approximation exist? If so, how can it be obtained?

1982 ◽  
Vol 102 (2) ◽  
pp. 437-446 ◽  
Author(s):  
J. R. Respess ◽  
Elliott Cheney

1994 ◽  
Vol 36 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Bang-Yen Chen

Let V and W be two vector spaces over the field of real numbers R. Then we have the notion of the tensor product V ⊗ W. If V and W are inner product spaces with their inner products given respectively by «,»v and «,» w, then V ⊗ W is also an inner product space with inner product denned byLet Em denote the m-dimensional Euclidean space with the canonical Euclidean inner product. Then, with respect to the inner product defined above, Em ⊗Em is isometric to Em. By applying this algebraic notion, we have the notion of tensor product mapf ⊗h: M→ E: M ⊗= Em; associated with any two maps f: M→Em and h:M→E of a given Riemannian manifold (M, g) defined as follows:Denote by R(M) the set of all transversal immersions from an n-dimensional Riemannian manifold (M, g) into Euclidean spaces; i. e., immersions f:M→Em with f(p) ∉T*(TPM) for p ∈ M. Then ⊗ is a binary operation on R(M). Hence, if f: Mm and h: M→Em are immersions belonging to R(M), then their tensor product map f ⊗ h: M→ Em ⊗ Em ≡ Emm is an immersion in R(M), called the tensor product immersionof f and h.


1992 ◽  
Vol 68 (2) ◽  
pp. 183-205 ◽  
Author(s):  
W.A Light ◽  
M.v Golitschek ◽  
E.W Cheney

2018 ◽  
Vol 97 (3) ◽  
pp. 459-470 ◽  
Author(s):  
IZ-IDDINE EL-FASSI ◽  
JANUSZ BRZDĘK

Motivated by the notion of Ulam stability, we investigate some inequalities connected with the functional equation $$\begin{eqnarray}f(xy)+f(x\unicode[STIX]{x1D70E}(y))=2f(x)+h(y),\quad x,y\in G,\end{eqnarray}$$ for functions $f$ and $h$ mapping a semigroup $(G,\cdot )$ into a commutative semigroup $(E,+)$, where the map $\unicode[STIX]{x1D70E}:G\rightarrow G$ is an endomorphism of $G$ with $\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D70E}(x))=x$ for all $x\in G$. We derive from these results some characterisations of inner product spaces. We also obtain a description of solutions to the equation and hyperstability results for the $\unicode[STIX]{x1D70E}$-quadratic and $\unicode[STIX]{x1D70E}$-Drygas equations.


1979 ◽  
Vol 22 (3) ◽  
pp. 363-366
Author(s):  
Colin Bennett ◽  
Karl Rudnick ◽  
Jeffrey D. Vaaler

In this note the best uniform approximation on [—1,1] to the function |x| by symmetric complex valued linear fractional transformations is determined. This is a special case of the more general problem studied in [1]. Namely, for any even, real valued function f(x) on [-1,1] satsifying 0 = f ( 0 ) ≤ f (x) ≤ f (1) = 1, determine the degree of symmetric approximationand the extremal transformations U whenever they exist.


Filomat ◽  
2014 ◽  
Vol 28 (7) ◽  
pp. 1307-1313
Author(s):  
Nasrin Karamikabir ◽  
Abdolrahman Razani

In this paper, a coincidence theorem is obtained which is generalization of Ky Fan?s fixed point theorem in modular function spaces. A modular version of Fan?s minimax inequality is proved. Moreover, some best approximation theorems are presented for multi-valued mappings.


Sign in / Sign up

Export Citation Format

Share Document