special case
Recently Published Documents


TOTAL DOCUMENTS

6652
(FIVE YEARS 1413)

H-INDEX

96
(FIVE YEARS 11)

2022 ◽  
Vol 14 (1) ◽  
pp. 1-22
Author(s):  
Amit Levi ◽  
Ramesh Krishnan S. Pallavoor ◽  
Sofya Raskhodnikova ◽  
Nithin Varma

We investigate sublinear-time algorithms that take partially erased graphs represented by adjacency lists as input. Our algorithms make degree and neighbor queries to the input graph and work with a specified fraction of adversarial erasures in adjacency entries. We focus on two computational tasks: testing if a graph is connected or ε-far from connected and estimating the average degree. For testing connectedness, we discover a threshold phenomenon: when the fraction of erasures is less than ε, this property can be tested efficiently (in time independent of the size of the graph); when the fraction of erasures is at least ε, then a number of queries linear in the size of the graph representation is required. Our erasure-resilient algorithm (for the special case with no erasures) is an improvement over the previously known algorithm for connectedness in the standard property testing model and has optimal dependence on the proximity parameter ε. For estimating the average degree, our results provide an “interpolation” between the query complexity for this computational task in the model with no erasures in two different settings: with only degree queries, investigated by Feige (SIAM J. Comput. ‘06), and with degree queries and neighbor queries, investigated by Goldreich and Ron (Random Struct. Algorithms ‘08) and Eden et al. (ICALP ‘17). We conclude with a discussion of our model and open questions raised by our work.


Author(s):  
Heiko Dietrich ◽  
Willem A De Graaf ◽  
Alessio Marrani ◽  
Marcos Origlia

Abstract We classify four qubit states under SLOCC operations, that is, we classify the orbits of the group SL(2,C)^4 on the Hilbert space H_4 = (C^2)^{\otimes 4}. We approach the classification by realising this representation as a symmetric space of maximal rank. We first describe general methods for classifying the orbits of such a space. We then apply these methods to obtain the orbits in our special case, resulting in a complete and irredundant classification of SL(2,C)^4-orbits on H_4. It follows that an element of H_4 is conjugate to an element of precisely 87 classes of elements. Each of these classes either consists of one element or of a parametrised family of elements, and the elements in the same class all have equal stabiliser in SL(2,C)^4. We also present a complete and irredundant classification of elements and stabilisers up to the action of the semidirect product Sym_4\ltimes\SL(2,C)^4 where Sym_4 permutes the four tensor factors of H_4.


Author(s):  
Henry Garrett

New setting is introduced to study “closing numbers” and “super-closing numbers” as optimal-super-resolving number, optimal-super-coloring number and optimal-super-dominating number. In this way, some approaches are applied to get some sets from (Neutrosophic)n-SuperHyperGraph and after that, some ideas are applied to get different types of super-closing numbers which are called by optimal-super-resolving number, optimal-super-coloring number and optimal-super-dominating number. The notion of dual is another new idea which is covered by these notions and results. In the setting of dual, the set of super-vertices is exchanged with the set of super-edges. Thus these results and definitions hold in the setting of dual. Setting of neutrosophic n-SuperHyperGraph is used to get some examples and solutions for two applications which are proposed. Both setting of SuperHyperGraph and neutrosophic n-SuperHyperGraph are simultaneously studied but the results are about the setting of n-SuperHyperGraphs. Setting of neutrosophic n-SuperHyperGraph get some examples where neutrosophic hypergraphs as special case of neutrosophic n-SuperHyperGraph are used. The clarifications use neutrosophic n-SuperHyperGraph and theoretical study is to use n-SuperHyperGraph but these results are also applicable into neutrosophic n-SuperHyperGraph. Special usage from different attributes of neutrosophic n-SuperHyperGraph are appropriate to have open ways to pursue this study. Different types of procedures including optimal-super-set, and optimal-super-number alongside study on the family of (neutrosophic)n-SuperHyperGraph are proposed in this way, some results are obtained. General classes of (neutrosophic)n-SuperHyperGraph are used to obtains these closing numbers and super-closing numbers and the representatives of the optimal-super-coloring sets, optimal-super-dominating sets and optimal-super-resolving sets. Using colors to assign to the super-vertices of n-SuperHyperGraph and characterizing optimal-super-resolving sets and optimal-super-dominating sets are applied. Some questions and problems are posed concerning ways to do further studies on this topic. Using different ways of study on n-SuperHyperGraph to get new results about closing numbers and super-closing numbers alongside sets in the way that some closing numbers super-closing numbers get understandable perspective. Family of n-SuperHyperGraph are studied to investigate about the notions, super-resolving and super-coloring alongside super-dominating in n-SuperHyperGraph. In this way, sets of representatives of optimal-super-colors, optimal-super-resolving sets and optimal-super-dominating sets have key role. Optimal-super sets and optimal-super numbers have key points to get new results but in some cases, there are usages of sets and numbers instead of optimal-super ones. Simultaneously, three notions are applied into (neutrosophic)n-SuperHyperGraph to get sensible results about their structures. Basic familiarities with n-SuperHyperGraph theory and neutrosophic n-SuperHyperGraph theory are proposed for this article.


2022 ◽  
Author(s):  
Alireza Beygi ◽  
Haralampos Hatzikirou

By applying the principle of maximum entropy, we demonstrate the universality of the spatial distributions of the cone photoreceptors in the retinas of vertebrates. We obtain Lemaître's law as a special case of our formalism.


2022 ◽  
Author(s):  
Alexander Strang ◽  
William Huffmyer ◽  
Hilary Rollins ◽  
Karen C. Abbott ◽  
Peter J. Thomas

While noise is an important factor in biology, biological processes often involve multiple noise sources, whose relative importance can be unclear. Here we develop tools that quantify the importance of noise sources in a network based on their contributions to variability in a quantity of interest. We generalize the edge importance measures proposed by Schmidt and Thomas [1] for first-order reaction networks whose steady-state variance is a linear combination of variance produced by each directed edge. We show that the same additive property extends to a general family of stochastic processes subject to a set of linearity assumptions, whether in discrete or continuous state or time. Our analysis applies to both expanding and contracting populations, as well as populations obeying a martingale (“wandering”) at long times. We show that the original Schmidt-Thomas edge importance measure is a special case of our more general measure, and is recovered when the model satisfies a conservation constraint


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yohsuke Murase ◽  
Minjae Kim ◽  
Seung Ki Baek

AbstractIndirect reciprocity is a key mechanism that promotes cooperation in social dilemmas by means of reputation. Although it has been a common practice to represent reputations by binary values, either ‘good’ or ‘bad’, such a dichotomy is a crude approximation considering the complexity of reality. In this work, we studied norms with three different reputations, i.e., ‘good’, ‘neutral’, and ‘bad’. Through massive supercomputing for handling more than thirty billion possibilities, we fully identified which norms achieve cooperation and possess evolutionary stability against behavioural mutants. By systematically categorizing all these norms according to their behaviours, we found similarities and dissimilarities to their binary-reputation counterpart, the leading eight. We obtained four rules that should be satisfied by the successful norms, and the behaviour of the leading eight can be understood as a special case of these rules. A couple of norms that show counter-intuitive behaviours are also presented. We believe the findings are also useful for designing successful norms with more general reputation systems.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 187
Author(s):  
Khalid A. Alattas ◽  
Ardashir Mohammadzadeh ◽  
Saleh Mobayen ◽  
Hala M. Abo-Dief ◽  
Abdullah K. Alanazi ◽  
...  

The Markov jump systems (MJSs) are a special case of parametric switching system. However, we know that time delay inevitably exists in many practical systems, and is known as the main source of efficiency reduction, and even instability. In this paper, the stochastic stable control design is discussed for time delay MJSs. In this regard, first, the problem of modeling of MJSs and their stability analysis using Lyapunov-Krasovsky functions is studied. Then, a state-feedback controller (SFC) is designed and its stability is proved on the basis of the Lyapunov theorem and linear matrix inequalities (LMIs), in the presence of polytopic uncertainties and time delays. Finally, by various simulations, the accuracy and efficiency of the proposed methods for robust stabilization of MJSs are demonstrated.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 156
Author(s):  
Žiga Rojec ◽  
Iztok Fajfar ◽  
Árpád Burmen

Analog circuit design requires large amounts of human knowledge. A special case of circuit design is the synthesis of robust and failure-resilient electronics. Evolutionary algorithms can aid designers in exploring topologies with new properties. Here, we show how to encode a circuit topology with an upper-triangular incident matrix and use the NSGA-II algorithm to find computational circuits that are robust to component failure. Techniques for robustness evaluation and evolutionary algorithm guidances are described. As a result, we evolve square root and natural logarithm computational circuits that are robust to high-impedance or short-circuit malfunction of an arbitrary rectifying diode. We confirm the simulation results by hardware circuit implementation and measurements. We think that our research will inspire further searches for failure-resilient topologies.


Sign in / Sign up

Export Citation Format

Share Document