Radicals of semigroup rings of commutative semigroups

1986 ◽  
Vol 99 (3) ◽  
pp. 435-445 ◽  
Author(s):  
J. Okniński ◽  
P. Wauters

In this paper we determine radicals of semigroup rings R[S] where R is an associative, not necessarily commutative, ring and S is a commutative semigroup. We will restrict ourselves to the prime radical P, the Levitzki radical L and the Jacobson radical J. At the end we will also give a few comments on the Brown-McCoy radical U.

1990 ◽  
Vol 108 (3) ◽  
pp. 429-433 ◽  
Author(s):  
A. V. Kelarev

Many authors have considered the radicals of semigroup rings of commutative semigroups. A list of the papers pertaining to this field is contained in [4]. In [1] Amitsur proved that, for any associative ring R and for every free commutative semigroup S, the equalities B(RS) = B(R)S and L(RS) = L(R)S hold, where B is the Baer radical and L is the Levitsky radical. A natural problem which arises is to describe semigroup rings RS such that π(RS) = π(R)S, where π is one of the most important radicals. For the Baer and Levitsky radicals and commutative semigroups a complete solution of the above problem follows from theorems 2·8 and 3·1 of [15].


1992 ◽  
Vol 34 (2) ◽  
pp. 133-141 ◽  
Author(s):  
A. V. Kelarev

A description of regular group rings is well known (see [12]). Various authors have considered regular semigroup rings (see [17], [8], [10], [11], [4]). These rings have been characterized for many important classes of semigroups, although the general problem turns out to be rather difficult and still has not got a complete solution. It seems natural to describe the regular radical in semigroup rings for semigroups of the classes mentioned. In [10], the regular semigroup rings of commutative semigroups were described. The aim of the present paper is to characterize the regular radical ρ(R[S]) for each associative ring R and commutative semigroup S.


Author(s):  
W. D. Munn

In two previous papers the author studied the Jacobson and nil redicals of the algebra of a commutative semigroup over a field [8] and over a commutative ring with unity [9]. This work is continued here.


Author(s):  
W. D. Munn

SynopsisA new description is provided for the nil radical of the algebra RS of a commutative semigroup S over a commutative ring R with a 1. It is shown that the Jacobson radical of RS is nil if the Jacobson radical of R is nil and that the converse holds in the case where S is periodic.


2021 ◽  
Author(s):  
Ryszard Mazurek

AbstractFor any commutative semigroup S and positive integer m the power function $$f: S \rightarrow S$$ f : S → S defined by $$f(x) = x^m$$ f ( x ) = x m is an endomorphism of S. We partly solve the Lesokhin–Oman problem of characterizing the commutative semigroups whose all endomorphisms are power functions. Namely, we prove that every endomorphism of a commutative monoid S is a power function if and only if S is a finite cyclic group, and that every endomorphism of a commutative ACCP-semigroup S with an idempotent is a power function if and only if S is a finite cyclic semigroup. Furthermore, we prove that every endomorphism of a nontrivial commutative atomic monoid S with 0, preserving 0 and 1, is a power function if and only if either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup with identity adjoined. We also prove that every endomorphism of a 2-generated commutative semigroup S without idempotents is a power function if and only if S is a subsemigroup of the infinite cyclic semigroup.


1992 ◽  
Vol 20 (12) ◽  
pp. 3593-3602 ◽  
Author(s):  
James Jenkins ◽  
Patrick F. Smith

1979 ◽  
Vol 28 (3) ◽  
pp. 335-345 ◽  
Author(s):  
Nicholas S. Ford

AbstractLet R be a commutative ring with identity, and let A be a finitely generated R-algebra with Jacobson radical N and center C. An R-inertial subalgebra of A is a R-separable subalgebra B with the property that B+N=A. Suppose A is separable over C and possesses a finite group G of R-automorphisms whose restriction to C is faithful with fixed ring R. If R is an inertial subalgebra of C, necessary and sufficient conditions for the existence of an R-inertial subalgebra of A are found when the order of G is a unit in R. Under these conditions, an R-inertial subalgebra B of A is characterized as being the fixed subring of a group of R-automorphisms of A. Moreover, A ⋍ B ⊗R C. Analogous results are obtained when C has an R-inertial subalgebra S ⊃ R.


2005 ◽  
Vol 72 (2) ◽  
pp. 317-324
Author(s):  
David Dolžan

The Jacobson group of a ring R (denoted by  = (R)) is the normal subgroup of the group of units of R (denoted by G(R)) obtained by adding 1 to the Jacobson radical of R (J(R)). Coleman and Easdown in 2000 showed that the Jacobson group is complemented in the group of units of any finite commutative ring and also in the group of units a n × n matrix ring over integers modulo ps, when n = 2 and p = 2, 3, but it is not complemented when p ≥ 5. In 2004 Wilcox showed that the answer is positive also for n = 3 and p = 2, and negative in all the remaining cases. In this paper we offer a different proof for Wilcox's results and also generalise the results to a matrix ring over an arbitrary finite commutative ring. We show this by studying the generators and relations that define a matrix ring over a field. We then proceed to examine the complementation of the Jacobson group in the matrix rings over graded rings and prove that complementation depends only on the 0-th grade.


Sign in / Sign up

Export Citation Format

Share Document