scholarly journals Linear non-local diffusion problems in metric measure spaces

Author(s):  
Aníbal Rodríguez-Bernal ◽  
Silvia Sastre-Gómez

The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.

2017 ◽  
Vol 272 (8) ◽  
pp. 3311-3346 ◽  
Author(s):  
Alexander Grigor'yan ◽  
Eryan Hu ◽  
Jiaxin Hu

2021 ◽  
Vol 271 (1330) ◽  
Author(s):  
Zhen-Qing Chen ◽  
Takashi Kumagai ◽  
Jian Wang

In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, variants of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particular, we establish stability of heat kernel estimates for α \alpha -stable-like processes even with α ≥ 2 \alpha \ge 2 when the underlying spaces have walk dimensions larger than 2 2 , which has been one of the major open problems in this area.


2018 ◽  
Vol 30 (5) ◽  
pp. 1129-1155 ◽  
Author(s):  
Jiaxin Hu ◽  
Xuliang Li

AbstractWe apply the Davies method to prove that for any regular Dirichlet form on a metric measure space, an off-diagonal stable-like upper bound of the heat kernel is equivalent to the conjunction of the on-diagonal upper bound, a cutoff inequality on any two concentric balls, and the jump kernel upper bound, for any walk dimension. If in addition the jump kernel vanishes, that is, if the Dirichlet form is strongly local, we obtain a sub-Gaussian upper bound. This gives a unified approach to obtaining heat kernel upper bounds for both the non-local and the local Dirichlet forms.


Author(s):  
Frederic Weber ◽  
Rico Zacher

AbstractWe establish a reduction principle to derive Li–Yau inequalities for non-local diffusion problems in a very general framework, which covers both the discrete and continuous setting. Our approach is not based on curvature-dimension inequalities but on heat kernel representations of the solutions and consists in reducing the problem to the heat kernel. As an important application we solve a long-standing open problem by obtaining a Li–Yau inequality for positive solutions u to the fractional (in space) heat equation of the form $$(-\Delta )^{\beta /2}(\log u)\le C/t$$ ( - Δ ) β / 2 ( log u ) ≤ C / t , where $$\beta \in (0,2)$$ β ∈ ( 0 , 2 ) . We also show that this Li–Yau inequality allows to derive a Harnack inequality. We further illustrate our general result with an example in the discrete setting by proving a sharp Li–Yau inequality for diffusion on a complete graph.


2019 ◽  
Vol 295 (3-4) ◽  
pp. 1751-1769 ◽  
Author(s):  
Dominik Dier ◽  
Jukka Kemppainen ◽  
Juhana Siljander ◽  
Rico Zacher

2008 ◽  
Vol 340 (1) ◽  
pp. 197-208 ◽  
Author(s):  
Annalisa Baldi ◽  
Francescopaolo Montefalcone

Sign in / Sign up

Export Citation Format

Share Document