Andreas Weiermann. Complexity bounds for some finite forms of Kruskal's Theorem. Journal of Symbolic Computation, vol. 18 (1994), pp. 463–448. - Andreas Weiermann. Termination proofs for term rewriting systems with lexicographic path ordering imply multiply recursive derivation lengths. Theoretical Computer Science, vol. 139 (1995), pp. 355–362. - Andreas Weiermann. Bounding derivation lengths with functions from the slow growing hierarchy. Archive of Mathematical Logic, vol. 37 (1998), pp. 427–441.

2004 ◽  
Vol 10 (4) ◽  
pp. 588-590
Author(s):  
Georg Moser
Author(s):  
Mareike Dressler ◽  
Adam Kurpisz ◽  
Timo de Wolff

AbstractVarious key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems is based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS-based certificates remain valid: First, for polynomials, which are nonnegative over the n-variate boolean hypercube with constraints of degree d there exists a SONC certificate of degree at most $$n+d$$ n + d . Second, if there exists a degree d SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree d SONC certificate that includes at most $$n^{O(d)}$$ n O ( d ) nonnegative circuit polynomials. Moreover, we prove that, in opposite to SOS, the SONC cone is not closed under taking affine transformation of variables and that for SONC there does not exist an equivalent to Putinar’s Positivstellensatz for SOS. We discuss these results from both the algebraic and the optimization perspective.


2002 ◽  
Vol 13 (06) ◽  
pp. 873-887
Author(s):  
NADIA NEDJAH ◽  
LUIZA DE MACEDO MOURELLE

We compile pattern matching for overlapping patterns in term rewriting systems into a minimal, tree matching automata. The use of directed acyclic graphs that shares all the isomorphic subautomata allows us to reduce space requirements. These are duplicated in the tree automaton. We design an efficient method to identify such subautomata and avoid duplicating their construction while generating the dag automaton. We compute some bounds on the size of the automata, thereby improving on previously known equivalent bounds for the tree automaton.


Sign in / Sign up

Export Citation Format

Share Document