directed acyclic graphs
Recently Published Documents


TOTAL DOCUMENTS

604
(FIVE YEARS 206)

H-INDEX

33
(FIVE YEARS 5)

Author(s):  
Rafaela Soares Rech ◽  
Bárbara Niegia Garcia de Goulart

Background: The exponential growth in epidemiological studies has been reflected in an increase in analytical studies. Thus, theoretical models are required to guide the definition of data analysis, although so far, they are seldom used in Speech, Language, and Hearing Sciences. Objective: To propose a multicausal model for oropharyngeal dysphagia using directed acyclic graphs showing mediating variables, confounding variables, and variables connected by direct causation. Design: This integrative literature review. Setting: This was carried out until January 4, 2021, and searches were performed with the MEDLINE, EMBASE,and other bases.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Samir Chowdhury ◽  
Steve Huntsman ◽  
Matvey Yutin

AbstractPath homology is a powerful method for attaching algebraic invariants to digraphs. While there have been growing theoretical developments on the algebro-topological framework surrounding path homology, bona fide applications to the study of complex networks have remained stagnant. We address this gap by presenting an algorithm for path homology that combines efficient pruning and indexing techniques and using it to topologically analyze a variety of real-world complex temporal networks. A crucial step in our analysis is the complete characterization of path homologies of certain families of small digraphs that appear as subgraphs in these complex networks. These families include all digraphs, directed acyclic graphs, and undirected graphs up to certain numbers of vertices, as well as some specially constructed cases. Using information from this analysis, we identify small digraphs contributing to path homology in dimension two for three temporal networks in an aggregated representation and relate these digraphs to network behavior. We then investigate alternative temporal network representations and identify complementary subgraphs as well as behavior that is preserved across representations. We conclude that path homology provides insight into temporal network structure, and in turn, emergent structures in temporal networks provide us with new subgraphs having interesting path homology.


Algorithmica ◽  
2021 ◽  
Author(s):  
Fedor V. Fomin ◽  
Petr A. Golovach ◽  
William Lochet ◽  
Pranabendu Misra ◽  
Saket Saurabh ◽  
...  

AbstractWe initiate the parameterized complexity study of minimum t-spanner problems on directed graphs. For a positive integer t, a multiplicative t-spanner of a (directed) graph G is a spanning subgraph H such that the distance between any two vertices in H is at most t times the distance between these vertices in G, that is, H keeps the distances in G up to the distortion (or stretch) factor t. An additive t-spanner is defined as a spanning subgraph that keeps the distances up to the additive distortion parameter t, that is, the distances in H and G differ by at most t. The task of Directed Multiplicative Spanner is, given a directed graph G with m arcs and positive integers t and k, decide whether G has a multiplicative t-spanner with at most $$m-k$$ m - k arcs. Similarly, Directed Additive Spanner asks whether G has an additive t-spanner with at most $$m-k$$ m - k arcs. We show that (i) Directed Multiplicative Spanner admits a polynomial kernel of size $$\mathcal {O}(k^4t^5)$$ O ( k 4 t 5 ) and can be solved in randomized $$(4t)^k\cdot n^{\mathcal {O}(1)}$$ ( 4 t ) k · n O ( 1 ) time, (ii) the weighted variant of Directed Multiplicative Spanner can be solved in $$k^{2k}\cdot n^{\mathcal {O}(1)}$$ k 2 k · n O ( 1 ) time on directed acyclic graphs, (iii) Directed Additive Spanner is $${{\,\mathrm{\mathsf{W}}\,}}[1]$$ W [ 1 ] -hard when parameterized by k for every fixed $$t\ge 1$$ t ≥ 1 even when the input graphs are restricted to be directed acyclic graphs. The latter claim contrasts with the recent result of Kobayashi from STACS 2020 that the problem for undirected graphs is $${{\,\mathrm{\mathsf{FPT}}\,}}$$ FPT when parameterized by t and k.


Algorithms ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 367
Author(s):  
Kunihiko Hiraishi

In a previous paper by the author, a pathfinding problem for directed trees is studied under the following situation: each edge has a nonnegative integer length, but the length is unknown in advance and should be found by a procedure whose computational cost becomes exponentially larger as the length increases. In this paper, the same problem is studied for a more general class of graphs called fork-join directed acyclic graphs. The problem for the new class of graphs contains the previous one. In addition, the optimality criterion used in this paper is stronger than that in the previous paper and is more appropriate for real applications.


2021 ◽  
Author(s):  
Daniel Bakkelund

AbstractPartial orders and directed acyclic graphs are commonly recurring data structures that arise naturally in numerous domains and applications and are used to represent ordered relations between entities in the domains. Examples are task dependencies in a project plan, transaction order in distributed ledgers and execution sequences of tasks in computer programs, just to mention a few. We study the problem of order preserving hierarchical clustering of this kind of ordered data. That is, if we have $$a<b$$ a < b in the original data and denote their respective clusters by [a] and [b], then we shall have $$[a]<[b]$$ [ a ] < [ b ] in the produced clustering. The clustering is similarity based and uses standard linkage functions, such as single- and complete linkage, and is an extension of classical hierarchical clustering. To achieve this, we develop a novel theory that extends classical hierarchical clustering to strictly partially ordered sets. We define the output from running classical hierarchical clustering on strictly ordered data to be partial dendrograms; sub-trees of classical dendrograms with several connected components. We then construct an embedding of partial dendrograms over a set into the family of ultrametrics over the same set. An optimal hierarchical clustering is defined as the partial dendrogram corresponding to the ultrametric closest to the original dissimilarity measure, measured in the p-norm. Thus, the method is a combination of classical hierarchical clustering and ultrametric fitting. A reference implementation is employed for experiments on both synthetic random data and real world data from a database of machine parts. When compared to existing methods, the experiments show that our method excels both in cluster quality and order preservation.


Author(s):  
Zhengzhe Xiang ◽  
Yuhang Zheng ◽  
Mengzhu He ◽  
Longxiang Shi ◽  
Dongjing Wang ◽  
...  

AbstractRecently, the Internet-of-Things technique is believed to play an important role as the foundation of the coming Artificial Intelligence age for its capability to sense and collect real-time context information of the world, and the concept Artificial Intelligence of Things (AIoT) is developed to summarize this vision. However, in typical centralized architecture, the increasing of device links and massive data will bring huge congestion to the network, so that the latency brought by unstable and time-consuming long-distance network transmission limits its development. The multi-access edge computing (MEC) technique is now regarded as the key tool to solve this problem. By establishing a MEC-based AIoT service system at the edge of the network, the latency can be reduced with the help of corresponding AIoT services deployed on nearby edge servers. However, as the edge servers are resource-constrained and energy-intensive, we should be more careful in deploying the related AIoT services, especially when they can be composed to make complex applications. In this paper, we modeled complex AIoT applications using directed acyclic graphs (DAGs), and investigated the relationship between the AIoT application performance and the energy cost in the MEC-based service system by translating it into a multi-objective optimization problem, namely the CA$$^3$$ 3 D problem — the optimization problem was efficiently solved with the help of heuristic algorithm. Besides, with the actual simple or complex workflow data set like the Alibaba Cloud and the Montage project, we conducted comprehensive experiments to evaluate the results of our approach. The results showed that the proposed approach can effectively obtain balanced solutions, and the factors that may impact the results were also adequately explored.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ester Cerin ◽  
Anthony Barnett ◽  
Jonathan E. Shaw ◽  
Erika Martino ◽  
Luke D. Knibbs ◽  
...  

Abstract Background There is a dearth of studies on the effects of the neighbourhood environment on adults’ cognitive function. We examined how interrelated aspects of the built and natural neighbourhood environment, including air pollution, correlate with adults’ cognitive function, and the roles of physical activity and sedentary behaviours in these associations. Methods We used data from 4,141 adult urban dwellers who participated in the Australian Diabetes, Obesity and Lifestyle 3 study on socio-demographic characteristics, neighbourhood self-selection, physical activity and sedentary behaviours, and cognitive function. Neighbourhood environmental characteristics included population density, intersection density, non-commercial land use mix, and percentages of commercial land, parkland and blue space, all within 1 km residential buffers. We also calculated annual mean concentrations of NO2 and PM2.5. Generalised additive mixed models informed by directed acyclic graphs were used to estimate the total, direct and indirect effects of environmental attributes on cognitive functions and the joint-significance test was used to examine indirect effects via behaviours. Results In the total effects models, population density and percentage of parkland were positively associated with cognitive function. A positive association of PM2.5 with memory was also observed. All neighbourhood environmental attributes were directly and/or indirectly related to cognitive functions via other environmental attributes and/or physical activity but not sedentary behaviours. Engagement in transportation walking and gardening frequency partially mediated the positive effects of the neighbourhood environment on cognitive function, while frequency of transportation walking mediated the negative effects. Conclusions In the context of a low-density country like Australia, denser urban environments with access to parkland may benefit residents’ cognitive health by providing opportunities for participation in a diversity of activities. A more fine-grained characterisation of the neighbourhood environment may be necessary to tease out the negative and positive impacts of inter-related characteristics of urban neighbourhood environments on cognitive function.


Sign in / Sign up

Export Citation Format

Share Document