scholarly journals Non-negative values of quadratic forms

1971 ◽  
Vol 12 (2) ◽  
pp. 224-238 ◽  
Author(s):  
R. T. Worley

In a paper [1] of the same title Barnes considered the problem of finding an upper bound for the infimum m+(f) of the non-negative values1 of an indefinite quadratic form f in n variables, of given determinant det(f) ≠ 0 and of signature s. In particular it was announced (and later proved — see [2]) that m+(f) ≦ (16/5)+ for ternary quadratic forms of determinant 1 and signature — 1. A simple consequence of this result is that m+(f) ≦ (256/135)+ for quaternary quadratic forms of determinant — 1 and signature — 2.

1981 ◽  
Vol 89 (2) ◽  
pp. 225-235 ◽  
Author(s):  
Madhu Raka

Let Qr be a real indefinite quadratic form in r variables of determinant D ≠ 0 and of type (r1, r2), 0 < r1 < r, r = r1 + r2, S = r1 − r2 being the signature of Qr. It is known (e.g. Blaney (3)) that, given any real numbers c1, c2,…, cr, there exists a constant C depending only on r and s such that the inequalityhas a solution in integers x1, x2, …, xr.


1963 ◽  
Vol 15 ◽  
pp. 412-421 ◽  
Author(s):  
J. H. H. Chalk

Letbe an indefinite quadratic form in the integer variables x1, . . . , xn with real coefficients of determinant D = ||ars||(n) ≠ 0. The homogeneous minimum MH(Qn) and the inhomogeneous minimum MI(Qn) of Qn(x) are defined as follows :


Author(s):  
Madhu Raka

The famous conjecture of Watson(11) on the minima of indefinite quadratic forms in n variables has been proved for n ≤ 5, n ≥ 21 and for signatures 0 and ± 1. For the details and history of the conjecture the reader is referred to the author's paper(8). In the succeeding paper (9), we prove Watson's conjecture for signature ± 2 and ± 3 and for all n. Thus only one case for n = 6 (i.e. forms of type (1, 5) or (5, 1)) remains to he proved which we do here; thereby completing the case n = 6. This result is also used in (9) for proving the conjecture for all quadratic forms of signature ± 4. More precisely, here we prove:Theorem 1. Let Q6(x1, …, x6) be a real indefinite quadratic form in six variables of determinant D ( < 0) and of type (5, 1) or (1, 5). Then given any real numbers ci, 1 ≤ i ≤ 6, there exist integers x1,…, x6such that


1968 ◽  
Vol 8 (1) ◽  
pp. 87-101 ◽  
Author(s):  
Vishwa Chander Dumir

Let Q(x1, …, xn) be an indefinite quadratic form in n-variables with real coefficients, determinant D ≠ 0 and signature (r, s), r+s = n. Then it is known (e.g. see Blaney [2]) that there exist constants Γr, s depending only on r and s such for any real numbers c1, …, cn we can find integers x1, …, xn satisfying


1961 ◽  
Vol 2 (1) ◽  
pp. 9-10 ◽  
Author(s):  
E. S. Barnes

If f(x) is a real indefinite quadratic form in n variables with determinant d ≠ 0, we set for any real α.


1967 ◽  
Vol 63 (2) ◽  
pp. 277-290 ◽  
Author(s):  
Vishwa Chander Dumir

Let Q (x1, …, xn) be a real indefinite quadratic form in n-variables x1,…, xn with signature (r, s),r + s = n and determinant D ≠ 0. Then it is known (see Blaney (2)) that there exists constant Cr, s depending only on r, s such that given any real numbers c1, …,cn we can find integers x1, …, xn satisfying


2007 ◽  
Vol 03 (04) ◽  
pp. 541-556 ◽  
Author(s):  
WAI KIU CHAN ◽  
A. G. EARNEST ◽  
MARIA INES ICAZA ◽  
JI YOUNG KIM

Let 𝔬 be the ring of integers in a number field. An integral quadratic form over 𝔬 is called regular if it represents all integers in 𝔬 that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over ℤ. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over [Formula: see text]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over [Formula: see text], and thus extends the corresponding finiteness results for spinor regular quadratic forms over ℤ obtained in [1,3].


2018 ◽  
Vol 2019 (23) ◽  
pp. 7139-7159 ◽  
Author(s):  
Kevin Henriot ◽  
Kevin Hughes

Abstract We obtain truncated restriction estimates of an unexpected form for discrete surfaces $$\begin{align*}S_N = \{\, ( n_1 , \dots , n_d , R( n_1 , \dots, n_d ) ) \,,\, n_i \in [-N,N] \cap {\mathbb{Z}} \,\},\end{align*}$$ where $R$ is an indefinite quadratic form with integer matrix.


2017 ◽  
Vol 26 (14) ◽  
pp. 1750102 ◽  
Author(s):  
José María Montesinos-Amilibia

An example of an integral ternary quadratic form [Formula: see text] such that its associated orbifold [Formula: see text] is a manifold is given. Hence, the title is proved.


Sign in / Sign up

Export Citation Format

Share Document