scholarly journals A Conserved Active Site Tyrosine Residue of Proline Dehydrogenase Helps Enforce the Preference for Proline over Hydroxyproline as the Substrate†‡

Biochemistry ◽  
2009 ◽  
Vol 48 (5) ◽  
pp. 951-959 ◽  
Author(s):  
Elizabeth L. Ostrander ◽  
John D. Larson ◽  
Jonathan P. Schuermann ◽  
John J. Tanner
Biochemistry ◽  
1998 ◽  
Vol 37 (41) ◽  
pp. 14386-14393 ◽  
Author(s):  
Nicolas H. Thomä ◽  
Thomas W. Meier ◽  
Philip R. Evans ◽  
Peter F. Leadlay

2015 ◽  
Vol 10 (4) ◽  
pp. 1094-1098 ◽  
Author(s):  
Erik C. Hett ◽  
Hua Xu ◽  
Kieran F. Geoghegan ◽  
Ariamala Gopalsamy ◽  
Robert E. Kyne ◽  
...  

1992 ◽  
Vol 12 (9) ◽  
pp. 3757-3765
Author(s):  
J W Chen ◽  
B R Evans ◽  
S H Yang ◽  
H Araki ◽  
Y Oshima ◽  
...  

The site-specific recombinases Flp and R from Saccharomyces cerevisiae and Zygosaccharomyces rouxii, respectively, are related proteins that belong to the yeast family of site-specific recombinases. They share approximately 30% amino acid matches and exhibit a common reaction mechanism that appears to be conserved within the larger integrase family of site-specific recombinases. Two regions of the proteins, designated box I and box II, also harbor a significantly high degree of homology at the nucleotide sequence level. We have analyzed the properties of Flp and R variants carrying point mutations within the box I segment in substrate-binding, DNA cleavage, and full-site and half-site strand transfer reactions. All mutations abolish or seriously diminish recombinase function either at the substrate-binding step or at the catalytic steps of strand cleavage or strand transfer. Of particular interest are mutations of Arg-191 of Flp and R, residues which correspond to one of the two invariant arginine residues of the integrase family. These variant proteins bind substrate with affinities comparable to those of the corresponding wild-type recombinases. Among the binding-competent variants, only Flp(R191K) is capable of efficient substrate cleavage in a full recombination target. However, this protein does not cleave a half recombination site and fails to complete strand exchange in a full site. Strikingly, the Arg-191 mutants of Flp and R can be rescued in half-site strand transfer reactions by a second point mutant of the corresponding recombinase that lacks its active-site tyrosine (Tyr-343). Similarly, Flp and R variants of Cys-189 and Flp variants at Asp-194 and Asp-199 can also be complemented by the corresponding Tyr-343-to-phenylalanine recombinase mutant.


1996 ◽  
Vol 314 (3) ◽  
pp. 985-991 ◽  
Author(s):  
Subrata ADAK ◽  
Abhijit MAZUMDER ◽  
Ranajit K. BANERJEE

The plausible role of arginine and tyrosine residues at the active site of horseradish peroxidase (HRP) in aromatic donor (guaiacol) oxidation was probed by chemical modification followed by characterization of the modified enzyme. The arginine-specific reagents phenylglyoxal (PGO), 2,3-butanedione and 1,2-cyclohexanedione all inactivated the enzyme, following pseudo-first-order kinetics with second-order rate constants of 24 M-1·min-1, 0.8 M-1·min-1 and 0.54 M-1·min-1 respectively. Modification with tetranitromethane, a tyrosine-specific reagent, also resulted in 50% loss of activity following pseudo-first-order kinetics with a second-order rate constant of 2.0 M-1·min-1. The substrate, H2O2, and electron donors such as I- and SCN- offered no protection against inactivation by both types of modifier, whereas the enzyme was completely protected by guaiacol or o-dianisidine, an aromatic electron donor (second substrate) oxidized by the enzyme. These studies indicate the involvement of arginine and tyrosine residues at the aromatic donor site of HRP. The guaiacol-protected phenylglyoxal-modified enzyme showed almost the same binding parameter (Kd) as the native enzyme, and a similar free energy change (∆G´) for the binding of the donor. Stoicheiometric studies with [7-14C]phenylglyoxal showed incorporation of 2 mol of phenylglyoxal per mol of enzyme, indicating modification of one arginine residue for complete inactivation. The difference absorption spectrum of the tetranitromethane-modified against the native enzyme showed a peak at 428 nm, characteristic of the nitrotyrosyl residue, that was abolished by treatment with sodium dithionite, indicating specific modification of a tyrosine residue. Inactivation stoicheiometry showed that modification of one tyrosine residue per enzyme caused 50% inactivation. Binding studies by optical difference spectroscopy indicated that the arginine-modified enzyme could not bind guaiacol at all, whereas the tyrosine-modified enzyme bound it with reduced affinity (Kd 35 mM compared with 10 mM for the native enzyme). Both the modified enzymes, however, retained the property of the formation of compound II (one-electron oxidation state higher than native ferriperoxidase) with H2O2, but reduction of compound II to native enzyme by guaiacol did not occur in the PGO-modified enzyme, owing to lack of binding. No non-specific change in protein structure due to modification was evident from circular dichroism studies. We therefore suggest that the active site of HRP for aromatic donor oxidation is composed of an arginine and an adjacent tyrosine residue, of which the former plays an obligatory role in aromatic donor binding whereas the latter residue plays a facilitatory role, presumably by hydrophobic interaction or hydrogen bonding.


Sign in / Sign up

Export Citation Format

Share Document