scholarly journals On Fokker–Planck Equations for Turbulent Reacting Flows. Part 2. Filter Density Function for Large Eddy Simulation

2003 ◽  
Vol 70 (1-4) ◽  
pp. 153-181 ◽  
Author(s):  
Stefan Heinz
1998 ◽  
Vol 10 (2) ◽  
pp. 499-515 ◽  
Author(s):  
P. J. Colucci ◽  
F. A. Jaberi ◽  
P. Givi ◽  
S. B. Pope

Author(s):  
Mehdi Safari

Analysis of local entropy generation is an effective means to investigate sources of efficiency loss in turbulent combustion from the standpoint of the second law of thermodynamics. A methodology, termed the entropy filtered density function (En-FDF), is developed for large eddy simulation (LES) of turbulent reacting flows to include the transport of entropy, which embodies the complete statistical information about entropy variations within the subgrid scale. The modeled En-FDF contains a stochastic differential equation (SDE) for entropy which is solved by a Lagrangian Monte Carlo method. In this study, a numerical study has been done on effectiveness of SDE to model entropy variation using a partially stirred reactor (PaSR). This provides a computationally affordable case to compare different effects of entropy generation source terms and fine tune mixing coefficients. In this equation, turbulent mixing is modeled with Interaction by Exchange with the Mean (IEM). Combustion source terms are provided by direct integration of a GRI3.0 mechanism for methane/air system. Evolution of entropy was calculated from stochastic model and then compared with the one obtained directly by integrating the chemical mechanism. It was shown that results of both calculations have very good agreement versus different mixture fractions.


1999 ◽  
Vol 401 ◽  
pp. 85-121 ◽  
Author(s):  
F. A. JABERI ◽  
P. J. COLUCCI ◽  
S. JAMES ◽  
P. GIVI ◽  
S. B. POPE

A methodology termed the ‘filtered mass density function’ (FMDF) is developed and implemented for large-eddy simulation (LES) of variable-density chemically reacting turbulent flows at low Mach numbers. This methodology is based on the extension of the ‘filtered density function’ (FDF) scheme recently proposed by Colucci et al. (1998) for LES of constant-density reacting flows. The FMDF represents the joint probability density function of the subgrid-scale (SGS) scalar quantities and is obtained by solution of its modelled transport equation. In this equation, the effect of chemical reactions appears in a closed form and the influences of SGS mixing and convection are modelled. The stochastic differential equations (SDEs) which yield statistically equivalent results to those of the FMDF transport equation are derived and are solved via a Lagrangian Monte Carlo scheme. The consistency, convergence, and accuracy of the FMDF and the Monte Carlo solution of its equivalent SDEs are assessed. In non-reacting flows, it is shown that the filtered results via the FMDF agree well with those obtained by the ‘conventional’ LES in which the finite difference solution of the transport equations of these filtered quantities is obtained. The advantage of the FMDF is demonstrated in LES of reacting shear flows with non-premixed reactants. The FMDF results are appraised by comparisons with data generated by direct numerical simulation (DNS) and with experimental measurements. In the absence of a closure for the SGS scalar correlations, the results based on the conventional LES are significantly different from those obtained by DNS. The FMDF results show a closer agreement with DNS. These results also agree favourably with laboratory data of exothermic reacting turbulent shear flows, and portray several of the features observed experimentally.


Sign in / Sign up

Export Citation Format

Share Document