transport equation
Recently Published Documents


TOTAL DOCUMENTS

2889
(FIVE YEARS 354)

H-INDEX

65
(FIVE YEARS 7)

2022 ◽  
Vol 144 ◽  
pp. 104061
Author(s):  
F.S. de Azevedo ◽  
E. Sauter ◽  
G.A. Lorensi ◽  
A.P.G. Mocellin

Kerntechnik ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Zafer Bozkır ◽  
Recep Gökhan Türeci ◽  
Dinesh Chandra Sahni

Abstract One speed, time-independent and homogeneous medium neutron transport equation is solved for second order scattering using the Anlı-Güngör scattering function which is a recently investigated scattering function. The scattering function depends on Legendre polynomials and the t parameter which is defined on the interval [−1,  1]. A half-space albedo problem is examined with the FN method and the recently developed SVD method. Albedo values are calculated with two methods and tabulated. Thus, the albedo values for the Anlı-Güngör scattering are compared with these methods. The behaviour of the scattering function is similar to İnönü’s scattering function according to calculated results.


2022 ◽  
Author(s):  
Balaji Shankar Venkatachari ◽  
Pedro Paredes ◽  
Meelan M. Choudhari ◽  
Fei Li ◽  
Chau-Lyan Chang

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2368
Author(s):  
Gaetano Zimbardo ◽  
Francesco Malara ◽  
Silvia Perri

Superdiffusive transport of energetic particles in the solar system and in other plasma environments is often inferred; while this can be described in terms of Lévy walks, a corresponding transport differential equation still calls for investigation. Here, we propose that superdiffusive transport can be described by means of a transport equation for pitch-angle scattering where the time derivative is fractional rather than integer. We show that this simply leads to superdiffusion in the direction parallel to the magnetic field, and we discuss some advantages with respect to approaches based on transport equations with symmetric spatial fractional derivates.


Sign in / Sign up

Export Citation Format

Share Document