Queueing theory

AccessScience ◽  
2015 ◽  
Keyword(s):  
2002 ◽  
Vol 7 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Antanas Karoblis

The exponential distribution and the Erlang distribution function are been used in numerous areas of mathematics, and specifically in the queueing theory. Such and similar applications emphasize the importance of estimation of error of approximation by the Erlang distribution function. The article gives an analysis and technique of error’s estimation of an accuracy of such approximation, especially in some specific cases.


2017 ◽  
Author(s):  
Keguo Huang
Keyword(s):  

1973 ◽  
Vol 46 (4) ◽  
pp. 649
Author(s):  
E. G. Coffman, Jr.
Keyword(s):  

1963 ◽  
Vol 59 (1) ◽  
pp. 117-124 ◽  
Author(s):  
A. Wragg

AbstractThe time-dependent solutions of an infinite set of differential-difference equations arising from queueing theory and models of ‘living’ polymer are expressed in terms of modified Bessel functions. Explicit solutions are available for constant values of a parameter describing the arrival rate or monomer concentration; for time-dependent parameter a formal solution is obtained in terms of a function which satisfies a Volterra type integral equation of the second kind. These results are used as the basis of a numerical method of solving the infinite set of differential equations when the time-dependent parameter itself satisfies a differential equation.


Sign in / Sign up

Export Citation Format

Share Document